Complex Amplitudes
Please Log In for full access to the web site.
Note that this link will take you to an external site (https://shimmer.mit.edu) to authenticate, and then you will be redirected back to this page.
Part a. Find a complex constant c_1 so that Re(c_1e^{j\omega t})=\sin(\omega t)
for all real numbers \omega and t.
Part b. Find a complex constant c_2 so that Re(c_2e^{j\omega t})=\cos(\omega t)+\sin(\omega t) for all real numbers \omega and t.
Part c. Find a complex constant c_3 so that Re(c_3e^{j\omega t})=A\cos(\omega t)+B\sin(\omega t) for all real numbers \omega and t.
Part d. Find a complex constant c_4 so that Re(c_4e^{j\omega t})=\cos(\omega t−\phi) for all real numbers \omega, t, and \phi.
Part e. Find a complex constant c_5 so that Re(c_5e^{j\Omega n})=\cos((2\pi−\Omega)n) for all real numbers \Omega and all integers n.