Fourier Series Transformations

Part a. Let $f_1(t)$ represent the following periodic, continuous-time signal, with period T=1:

Let $g_1(t) = 1 - f_1(3t - \frac{1}{4})$.

Sketch $g_1(t)$ on the following axes. Label the important parameters of your plot.

Part b. Let $f_2(t)$ represent the following periodic, continuous-time signal with period T=1:

Let
$$g_2(t) = 1 - f_2(3t - \frac{1}{4})$$
.

Let $F_2[k]$ and $G_2[k]$ represent the Fourier series coefficients for $f_2(t)$ and $g_2(t)$, respectively, where both series are computed with the same period T=1. Determine expressions for each of $G_2[0]$ through $G_2[15]$ in terms of the Fourier coefficients $F_2[k]$. Your table entries can contain real and/or imaginary numbers and constants such as e and π . Your entries should not contain integrals or infinite sums.

$\underline{}$	$G_2[k]$
0	1 - F[0]
1	0
2	0
3	jF[1]
4	0
5	0
6	F[2]
7	0

k	$G_2[k]$
8	0
9	-jF[3]
10	0
11	0
12	-F[4]
13	0
14	0
15	j F[5]

$$F_{2}[k] = \frac{1}{T} \int_{T} f(t)e^{-j\frac{2\pi k}{T}t}dt$$

$$G_{2}[k] = \frac{1}{T} \int_{T} g(t)e^{-j\frac{2\pi k}{T}t}dt = \frac{1}{T} \int_{T} \left(1 - f\left(3t - \frac{1}{4}\right)\right)e^{-j\frac{2\pi k}{T}t}dt$$

$$= \frac{1}{T} \int_{T} e^{-j\frac{2\pi k}{T}}dt - \frac{1}{T} \int_{T} f\left(3t - \frac{1}{4}\right)e^{-j\frac{2\pi k}{T}t}dt$$

Let $\tau = 3t - 1/4$. Then $d\tau = 3dt$.

$$G_{2}[k] = \delta[k] - \frac{1}{T} \int_{3T} f(\tau) e^{-j\frac{2\pi k}{T}(\frac{\tau}{3} + \frac{1}{12})} \frac{1}{3} d\tau$$

$$= \delta[k] - e^{-j\frac{2\pi k}{12T}} \frac{1}{3T} \int_{3T} f(\tau) e^{-j\frac{2\pi k}{T}(\frac{\tau}{3})} d\tau$$

$$= \delta[k] - e^{-j\frac{2\pi k}{12T}} F_{2}[k/3]$$

Notice that the $\delta[k]$ term contributes 1 if k = 0 and 0 otherwise. Also notice that $G_2[k] = 0$ unless $k \mod 3 = 0$.

One way to think about this is that the period of f(t) is 1 second, and therefore f(t) can be expressed as a sum of harmonics that are integer multiples of 1 Hz. The g(t) signal is a compressed version of f(t), so the harmonics of g(t) are spread out by a factor of three.

A second way to think about this is by looking at the g(t) function itself. Since g(t) is periodic in 1/3 second, we should be expecting that the Fourier series for g(t) should only contain integer multiples of 3 Hz.