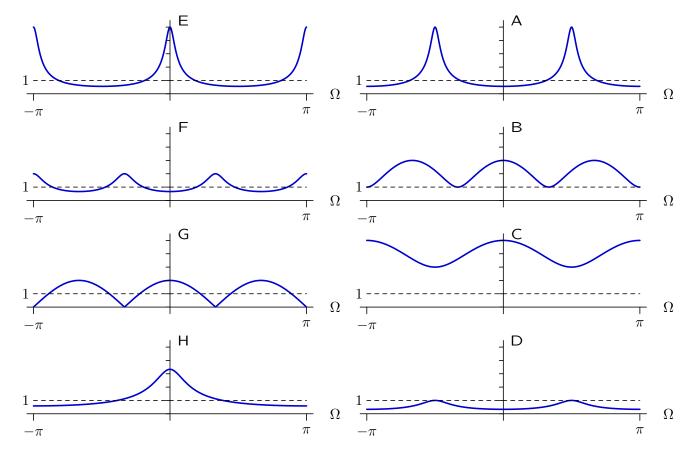
More Peaks and Valleys


Each of the plots below shows the magnitude of the frequency response of discrete-time system that can be described by one of the following difference equations, where α and m are parameters.

Form A: $y[n] = x[n] + \alpha x[n-m]$ Form B: $y[n] = x[n] + \alpha y[n-m]$

Each row in the following table gives the parameters for one of the plots. Write the letter of the corresponding plot in the right column of the table.

form	α	$_{m}$ Fre	quency Respons	e
			Enter A-H	
A	1	3	G	
A	4	2	С	
A	2	3	В	
В	0.7	1	Н	
В	-0.5	3	F	
В	-0.8	2	A	
В	-2	2	D	
В	0.8	2	E	

Note that the dashed line marks where the magnitude would be equal to 1.

Find the frequency responses from the difference equations.

Form A:

$$Y(\Omega) = X(\Omega) + \alpha e^{-j\Omega m} X(\Omega)$$

$$H_A(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = 1 + \alpha e^{-j\Omega m}$$

Form B:

$$Y(\Omega) = X(\Omega) + \alpha e^{-j\Omega m} Y(\Omega)$$

$$H_B(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{1}{1 - \alpha e^{-j\Omega m}}$$

Both of these frequency responses are periodic in Ω with period $2\pi/m$. Thus m tells us the number of periods of the frequency responses shown in the plots:

plot A: 2

plot B: 3

plot C: 2

plot D: 2

plot E: 2

plot F: 3

plot G: 3

1

plot H: 1

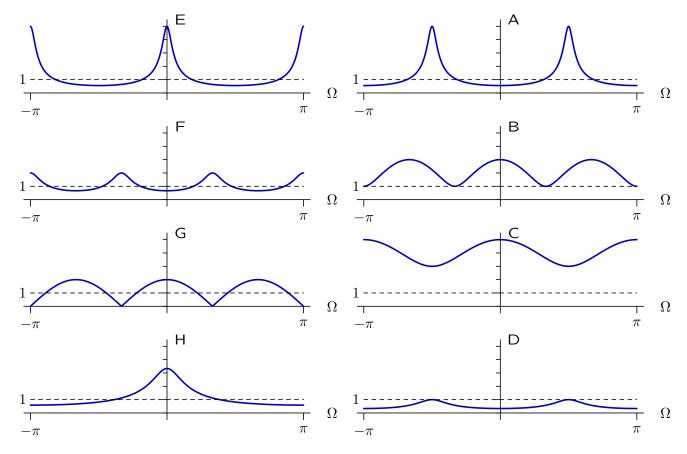
The magnitudes of the frequency responses are

$$\left| H_A(\Omega) \right| = \left| 1 + \alpha \cos(\Omega m) - j\alpha \sin(\Omega_m) \right| = \sqrt{(1 + \alpha \cos(\Omega m))^2 + (\alpha \sin(\Omega_m))^2} = \sqrt{1 - 2\alpha \cos(\Omega m) + \alpha^2}$$

$$\left|H_B(\Omega)\right| = \frac{1}{\left|1 + \alpha\cos(\Omega m) + j\alpha\sin(\Omega_m)\right|} = \frac{1}{\sqrt{(1 + \alpha\cos(\Omega m))^2 + (\alpha\sin(\Omega_m))^2}} = \frac{1}{\sqrt{1 + 2\alpha\cos(\Omega m) + \alpha^2}}$$

The maximum magnitudes of both forms occur when $2\alpha \cos = -2\alpha$ and the minimum occurs when $2\alpha \cos = 2\alpha$.

• Peaks and Valleys


Each of the plots below shows the magnitude of the frequency response of discrete-time system that can be described by one of the following difference equations, where α and m are parameters.

Form A: $y[n] = x[n] + \alpha x[n-m]$ Form B: $y[n] = x[n] + \alpha y[n-m]$

Each row in the following table gives the parameters for one of the plots. Write the letter of the corresponding plot in the right column of the table.

form	α	$_{m}$ Fre	quency Response Enter A–H
A	1	3	G
A	4	2	С
A	2	3	В
В	0.7	1	Н
В	-0.5	3	F
В	-0.8	2	A
В	-2	2	D
В	0.8	2	E

Note that the dashed line marks where the magnitude would be equal to 1.

Find the frequency responses from the difference equations.

Form A:

$$Y(\Omega) = X(\Omega) + \alpha e^{-j\Omega m} X(\Omega)$$

$$H_A(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = 1 + \alpha e^{-j\Omega m}$$

Form B:

$$Y(\Omega) = X(\Omega) + \alpha e^{-j\Omega m} Y(\Omega)$$

$$H_B(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{1}{1 - \alpha e^{-j\Omega m}}$$

Both of these frequency responses are periodic in Ω with period $2\pi/m$. Thus m tells us the number of periods of the frequency responses shown in the plots:

plot A: 2

plot B: 3

plot C: 2

plot D: 2

plot E: 2

plot F: 3

plot G: 3

plot H: 1

The magnitudes of the frequency responses are

$$\left| H_A(\Omega) \right| = \left| 1 + \alpha \cos(\Omega m) - j\alpha \sin(\Omega_m) \right| = \sqrt{(1 + \alpha \cos(\Omega m))^2 + (\alpha \sin(\Omega_m))^2} = \sqrt{1 - 2\alpha \cos(\Omega m) + \alpha^2}$$

$$\left|H_B(\Omega)\right| = \frac{1}{\left|1 + \alpha\cos(\Omega m) + j\alpha\sin(\Omega_m)\right|} = \frac{1}{\sqrt{(1 + \alpha\cos(\Omega m))^2 + (\alpha\sin(\Omega_m))^2}} = \frac{1}{\sqrt{1 + 2\alpha\cos(\Omega m) + \alpha^2}}$$

The maximum magnitudes of both forms occur when $2\alpha \cos = -2\alpha$ and the minimum occurs when $2\alpha \cos = 2\alpha$.