Describing Sinusoids

Part a. Let $x_1[n] = a_1 e^{j\Omega_1 n} + a_1^* e^{-j\Omega_1 n}$ as shown in the following figure.

Estimate a_1 and Ω_1 , where Ω_1 is real-valued and a_1 may be complex. Place an "×" on the complex plane shown below (where the circle has a radius of 1) to indicate the value of a_1 . Also, place an "×" on the number line shown below to indicate the value of Ω_1 .

This signal can be written as

$$x_1[n] = a_1 e^{j\Omega_1 n} + a_1^* e^{-j\Omega_1 n} = a_1 e^{j\Omega_1 n} + (a_1 e^{j\Omega_1 n})^* = 2 \operatorname{Re} \left(a_1 e^{j\Omega_1 n} \right) = \operatorname{Re} \left(2a_1 e^{j\Omega_1 n} \right).$$

Thus this signal is the real part of a vector $2a_1$ in the complex plane whose angle increases by Ω_1 radians per sample n. Since the period of $x_1[n]$ is 20,

$$e^{j\Omega_1 n} = e^{j\Omega_1(n+20)} = e^{j\Omega_1 n} e^{j20\Omega_1}$$

and the period of the complex exponential is 2π , it follows that $20\Omega_1 = 2\pi$, and

$$\Omega_1 = \frac{2\pi}{20} \approx 0.314.$$

The peak amplitude is approximately 1, so $|2a_1| = 1$, and $|a_1| = 0.5$. The first peak of $x_1[n]$ occurs about 2.5 samples after n = 0, which corresponds to approximately 2.5/20 = 1/8 of a cycle. So the angle of a_1 must start at approximately $-\pi/4$ and therefore $\angle a_1 \approx -\frac{\pi}{4}$. Thus

$$a_1 \approx \frac{1}{2} e^{-j\pi/4} \,.$$

Part b. Let $x_2[n] = c_2 \cos(\Omega_2 n) + d_2 \sin(\Omega_2 n)$ as shown in the following figure.

Estimate the real-valued constants c_2 , d_2 , and Ω_2 . Place an "×" on each of the number lines shown below to indicate these values.

We can express $x_2[n] = c_2 \cos \Omega_2 n + d_2 \sin \Omega_2 n$ as

$$x_{2}[n] = c_{2} \left(\frac{e^{j\Omega_{2}n} + e^{-j\Omega_{2}n}}{2} \right) + d_{2} \left(\frac{e^{j\Omega_{2}n} - e^{-j\Omega_{2}n}}{2j} \right)$$
$$= \frac{1}{2} (c_{2} - jd_{2})e^{j\Omega_{2}n} + \frac{1}{2} (c_{2} + jd_{2})e^{-j\Omega_{2}n}$$
$$= \operatorname{Re} \left((c_{2} - jd_{2})e^{j\Omega_{2}n} \right)$$

Since the period of $x_2[n]$ is 10,

$$e^{j\Omega_2 n} = e^{j\Omega_2(n+10)} = e^{j\Omega_2 n} e^{j10\Omega_2}$$

and the period of the complex exponential is 2π , it follows that $10\Omega_2 = 2\pi$, and

$$\Omega_2 = \frac{2\pi}{10} \approx 0.628 \,.$$

The peak amplitude of $x_2[n]$ is approximately 1, so $|c_2 - jd_2| = \sqrt{c_2^2 + d_2^2} = 1$. The first peak of $x_2[n]$ occurs at about 1/8 of a cycle. So the angle of $c_2 - jd_2$ must be approximately $-\pi/4$. Therefore

$$c_2 \approx d_2 \approx \frac{1}{\sqrt{2}} \approx 0.7$$
.

Part c. Let $x_3[n] = \cos(\Omega_3 n + \phi_3)$ as shown in the following figure.

Estimate the real-valued constants ϕ_3 and Ω_3 . Place an "×" on each of the number lines shown below to indicate these values.

2

3

The period of $x_3[n]$ is approximately 30, so

$$\Omega_3 pprox rac{2\pi}{30} pprox 0.2$$
 .

The signal peaks at n = 11, so

$$x_3[n_0] = \cos(\Omega_3 n_0 + \phi_3) \approx 1$$

so
$$\phi_3 \approx -11\Omega_3 = 22\pi/30 \approx -2.3$$
.

Part d. Let $x_4[n] = \text{Re}\left(a_4 e^{j\Omega_4 n}\right)$ as shown in the following figure.

Estimate a_4 and Ω_4 , where Ω_4 is real-valued and a_4 may be complex. Place an "×" on the complex plane shown below (where the circle has a radius of 1) to indicate the value of a_4 . Also, place an "×" on the number line shown below to indicate the value of Ω_4 .

The period of $x_4[n]$ is 20, so

$$\Omega_4 = \frac{2\pi}{20} \approx 0.314.$$

The peak amplitude is approximately 1, so $|a_4| \approx 1$. The first peak of $x_4[n]$ occurs near n=12.5, which corresponds to approximately 12.5/20=5/8 of a cycle, so that the angle of a_4 must be approximately $\angle a_4 \approx -\frac{5}{4}\pi$.