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Dome Sweet Dome
Ben Bitdiddle created a signal x0[n] representing the MIT dome, but he only saved the DTFS coefficients
X0[k] (and not the original signal). However, he knew that one period of the original signal (which is
periodic in N = 51) looked like this:
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Ben tried several different methods of recovering the original image based on X0[k], by applying the DTFS
synthesis equation to the following sets of coefficients.
For each set of Fourier coefficients described below (XA through XI), determine the corresponding signal
from the 24 options shown on the next page (x1 through x24).
Assume that all 24 of those signals are purely real and are periodic in N = 51. If the required signal would
be complex-valued, record your answer as "must be complex." Otherwise, write the name of the signal from
the following page.

The original signal is periodic in N = 51 as shown below.

n

x0[n]

a. XA[k] = Re (X0[k])

XA[k] = Re (X0[k]) = 1
2X0[k] + 1

2X
∗
0 [k] (property of complex numbers)

Now find the effect of conjugating X[k].

X[k] = 1
N

∑
x[n]e− j2πkn

N (Fourier analysis equation)

X∗[k] = 1
N

∑
x∗[n]e

j2πkn
N (conjugate both sides)

X∗[k] = 1
N

∑
x∗[−n]e− j2πkn

N (n→ −n)

x∗[−n] ft
=⇒ X∗[k] (Fourier analysis equation)

Then

xA[n] = 1
2x0[n] + 1

2x
∗
0[−n] = 1

2x0[n] + 1
2x0[−n]

since x0[n] is real-valued. The flipped signal x0[−n] looks a lot like x0[n] (since that function is symmetric
about n = 18.5) but it is shifted by 15 samples. Thus when x0[n] is added to x0[−n], part of the dome
from x0[n] overlaps part of the dome from x0[−n]. The result looks like x16[n].
We can think about symmetry properties as a way to check this answer. The sum of x0[n] and x0[−n]
(which is a flipped version about n = 0) will be an even function of n. Since x0[n] is also periodic in
n = 51, the result of adding x0[n] to x0[−n] is also symmetric about n = 25.5. There are only four signals
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with this symmetry: x9, x11, x16, and x22. (Notice that x14 is not quite right since there are only four
leading values of zero.) However, the signal is clearly not zero, eliminating x11. Also x9 is upside down
and x22 is upside-down plus a constant. Thus the answer must be x16.

b. XB[k] = Im (X0[k])

XB[k] = Im (X0[k]) = 1
2jX0[k]− 1

2jX
∗
0 [k] (property of complex numbers)

Then

xB[n] = 1
2j x0[n]− 1

2j x
∗
0[−n] = 1

2j x0[n]− 1
2j x0[−n]

Since x0[n] is real-valued, xB[n] must be complex-valued.
None of the possible answers are complex valued, so the answer is "COMPLEX".

c. XC [k] = jIm (X0[k])

XC [k] = j Im (X0[k]) = 1
2X0[k]− 1

2X
∗
0 [k] (property of complex numbers)

Thus

xC [n] = 1
2x0[n]− 1

2x
∗
0[−n] = 1

2x0[n]− 1
2x0[−n]

since x0[n] is real-valued. When x0[−n] is subtracted from x0[n], the result is an odd function of n. Since
x0[n] is also periodic in N = 51, the result is also antisymmetric about n = 25.5. The result looks like
x8[n].
x11 has the right symmetry properties, but our answer is clearly not zero. Also x13 clearly has the wrong
shape. x21 is the negative of the right answer, i.e.,x[−n]− x[n]. So the answer must be x8.

d. XD[k] =
{

0 if k = 0
X0[k] otherwise

By setting k = 0 in the analysis equation,

X0[k] = 1
N

∑
x0[n]e

−j2πkn
N

we can see X0[0] is the average value of x0[n]. Let x̄ represent the average value of x0[n]. Then by
linearity

x0[n]− x̄ ft
=⇒ X0[k]−X0[0]

Setting X0[0] to zero is thus equivalent to subtracting the average value of x0[n] from x[n] for all n.
Two signals x6[n] and x19[n] are simple vertical shifts of x0[n]. Since x19[n] is shifted in the wrong
direction, the answer must be x6[n].

e. XE [k] =
{

0 if k = 25
X0[k] otherwise
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Setting the twenty-fifth component of the Fourier series to zero is equivalent to subtracting a complex
exponential with frequency of 2π25

51 from x0[n].

So our new signal would be xE [n] = x0[n]−X0[25]ej2π(25/51)n. Unless X0[25] = 0, this extra term will be
complex-valued.

f. XF [k] = X0[k] + 1/51

By linearity, adding a constant to X0[k] adds a signal y[n] to x0[n] where y[n] is the signal whose Fourier
series Y [k] is 1/51 for all k:

y[n] =
∑ 1

51e
jωkn

51

By orthogonality, y[n] must be δ[n] since the above sum goes to zero except at n = 0.
Thus the solution is x20[n].

g. XG[k] = ejπX0[k]

The multiplier ejπ is equal to -1. Therefore the new signal is flipped about the horizontal axis. The
solution must be x23[n].

h. XH [k] =
{

X0[0] if k = 0
ejπX0[k] otherwise

The multiplier here is the same as in Part 7.
However, the DC term is still that of the original signal (which is positive). The resulting effect is that
xH [n] = 2X0[0]− x0[n] (i.e., it is reflected about the horizontal axis, and then shifted to account for the
change in DC value).
The solution is x15[n].

i. XI [k] = |X0[k]|ej(−∠X0[k])

Negating the angle of a complex number while holding the magnitude constant has the same effect as
taking the complex conjugate of the original number. This follows from thinking about the definition of
magnitude and angle of a complex number a:

a = |a|ej∠a

a∗ = |a|e−j∠a

Thus XI [k] = X∗
0 [k].

Conjugating the Fourier series has the effect of conjugating the time function and then flipping it about
n = 0. Since x0[n] is real-valued, the result is just a time flip, and the answer is x10.
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Ben’s Graphs:
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