

6.300: Signal Processing

Sampling and Aliasing

Sampling: $x[n] \triangleq x(n\Delta)$, where $\Delta = \frac{1}{f_s}$ is the sampling interval. Brackets matter! Unless $\Delta = 1$, $x[n] \neq x(n)$.

Aliasing: Sometimes, $x_1[n] = x_2[n]$ even if $x_1(t) \neq x_2(t)$. Different continuous-time signals may yield the same set of discrete-time samples! (Generally undesirable.)

Sampling theorem: Suppose that f_{\max} is the highest non-zero frequency in a CT signal. A sampling rate $f_s \geq 2f_{\max}$ will prevent aliasing in frequencies $|f| \leq f_{\max}$.

Agenda for Recitation

- Dimensional analysis
- Sampling
- Aliasing and the sampling theorem

What questions do you have from lecture?

Dimensional Analysis

Always keep track of the **dimensions** of quantities!

We can often get the answer just by “mashing” quantities together to get the right dimensions in the end.

If a car is traveling at 60 miles per hour, how far does the car travel in 2.5 hours?

Dimensional Analysis

Consider a **pendulum**. The rod has length L and the bob has mass M . Let G denote the acceleration due to gravity. What is the period T of the oscillations?

Dimensional Analysis

Sinusoids in Continuous Time (CT)

$$\cos(\omega_0 t) = \cos(2\pi f_0 t) = \cos\left(\frac{2\pi}{T} t\right)$$

Sinusoids in Discrete Time (DT)

$$\cos(\Omega_0 n) = \cos(2\pi F_0 n) = \cos\left(\frac{2\pi}{N} n\right)$$

Determine units (e.g., seconds) for each term below.

- T period (CT)
- f_0 cyclical frequency (CT)
- ω_0 angular frequency (CT)
- N period (DT)
- F_0 cyclical frequency (DT)
- Ω_0 angular frequency (DT)

Dimensional Analysis

Suppose that we record 5 seconds of audio using a sampling rate $f_s = 20$ kHz. How many samples long is the resulting discrete-time (DT) signal?

Dimensional Analysis

“Middle C” is approximately 261.63 hertz (Hz). Let’s generate a “middle C” tone that lasts 5 seconds using a sampling rate of 44,100 samples per second (Hz).

```
import math
from lib6300.audio import wav_write
tone = [cos(EXPR1 * n) for n in range(0, EXPR2)]
wav_write(tone, 44100, 'audio.wav')
```

Determine values for EXPR1 and EXPR2.

Sampling

A **continuous-time (CT) signal** is a **function**.

Time is indexed by t , a real number.

A **discrete-time (DT) signal** is a **sequence**.

Time is indexed by n , an integer.

Sampling a CT signal yields a DT signal: $t \rightarrow n\Delta = n/f_s$.

$$x[n] \triangleq x(n\Delta) = x\left(\frac{n}{f_s}\right)$$

- Δ (seconds per sample) is the **sampling interval**.
- f_s (samples per second) is the **sampling rate**.

Brackets matter! Unless $\Delta = f_s = 1$, $x[n] \neq x(n)$.

Sampling

Sketch $x(t) = \cos(2\pi t)$ for $0 \leq t \leq 3$.

Next, sketch $x[n]$ for each choice of Δ given below.

- $\Delta = 0.25$ seconds per sample
- $\Delta = 0.5$ seconds per sample
- $\Delta = 0.75$ seconds per sample
- $\Delta = 1$ second per sample

Sampling

What is the fundamental period (T) of $x(t)$?

$$x(t) = \cos\left(\frac{2\pi}{7}t\right)$$

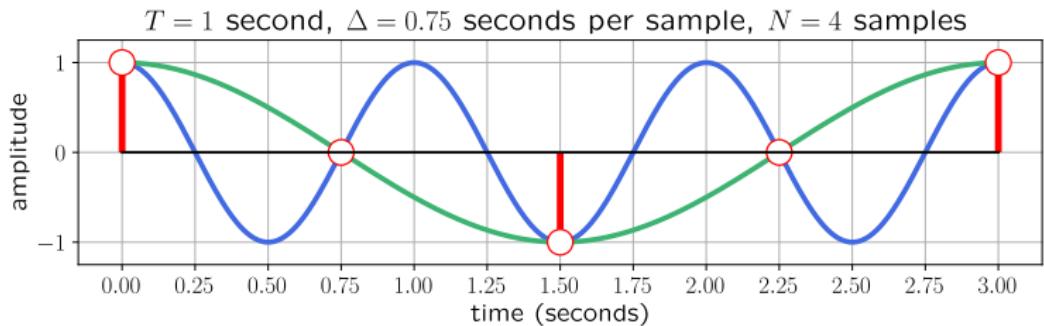
Suppose we sample $x(t)$ using sampling interval $\Delta = 3$ seconds per sample. What is the fundamental period (N) of $x[n]$, the resulting discrete-time signal?

Aliasing and the Sampling Theorem

When we sample, we throw away some information that was in the CT signal. What if we throw away too much?

Answer: **Aliasing!** It occurs if we sample too slowly.

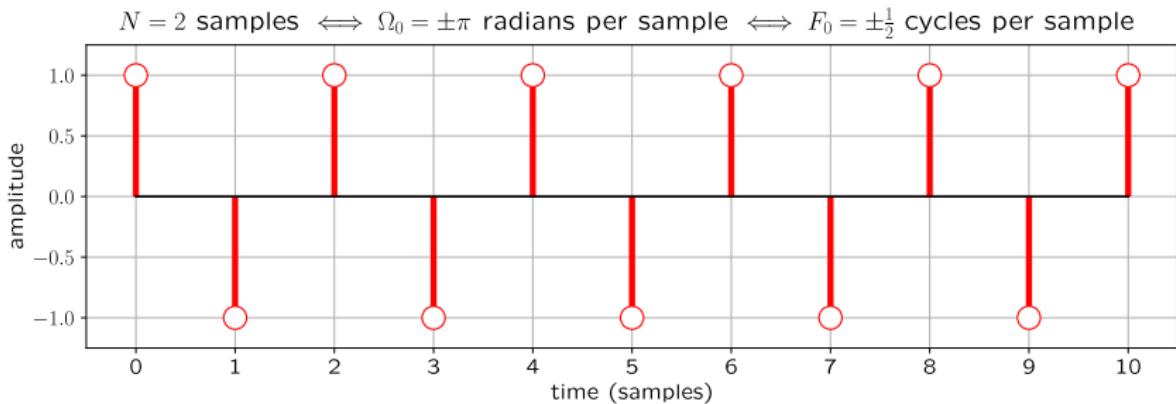
Aliasing: Sometimes, $x_1[n] = x_2[n]$ even if $x_1(t) \neq x_2(t)$.
Different continuous-time signals may yield the same set of discrete-time samples! (Generally undesirable.)



Aliasing and the Sampling Theorem

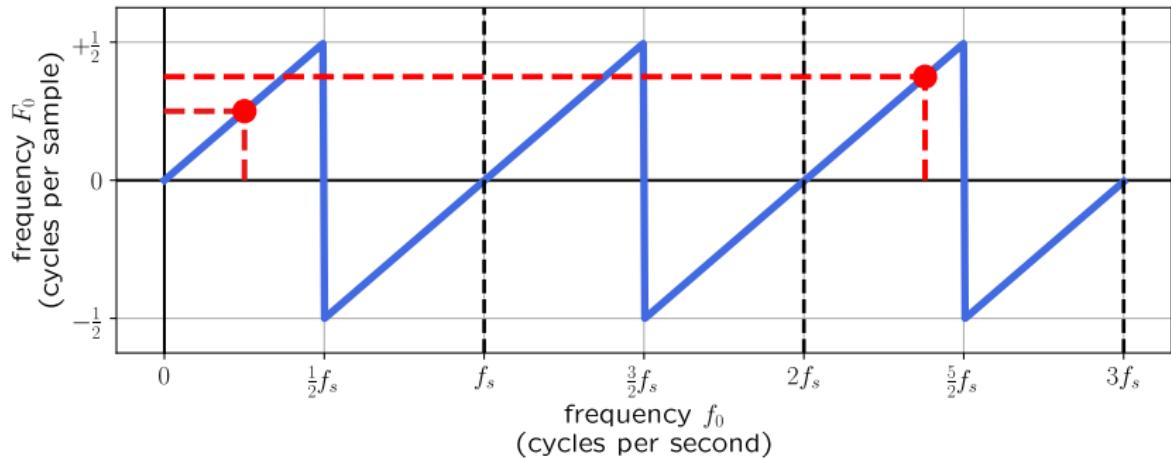
There is no smallest unit of continuous time, but there is indeed a smallest unit of discrete time — a single sample.

Similarly, in continuous time, there is no such thing as a “highest frequency” — but in discrete time, there is!



The highest discrete-time frequency is $\Omega_0 = \pm\pi$ radians per sample — equivalently, $F_0 = \pm\frac{1}{2}$ cycles per sample.

Aliasing and the Sampling Theorem



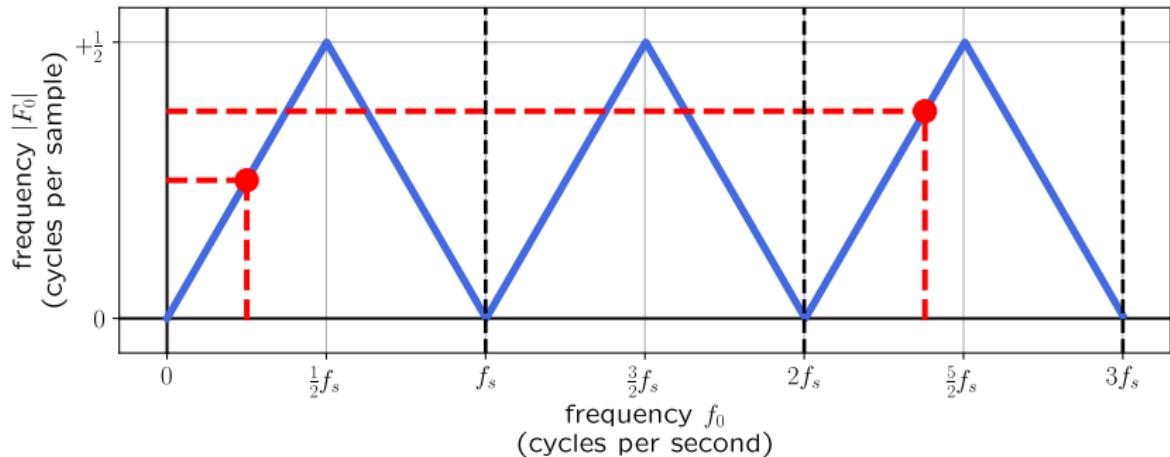
Which continuous-time frequencies (e.g., f_0 and ω_0) these discrete-time frequencies (e.g., F_0 and Ω_0) correspond to is determined by the sampling rate f_s .

$$\underbrace{-\frac{1}{2}f_s \leq f_0 \leq \frac{1}{2}f_s}_{\text{cycles per second}}$$

$$\Leftrightarrow \underbrace{-\frac{1}{2} \leq F_0 \leq \frac{1}{2}}_{\text{cycles per sample}}$$

$$\Leftrightarrow \underbrace{-\pi \leq \Omega_0 \leq \pi}_{\text{radians per sample}}$$

Aliasing and the Sampling Theorem

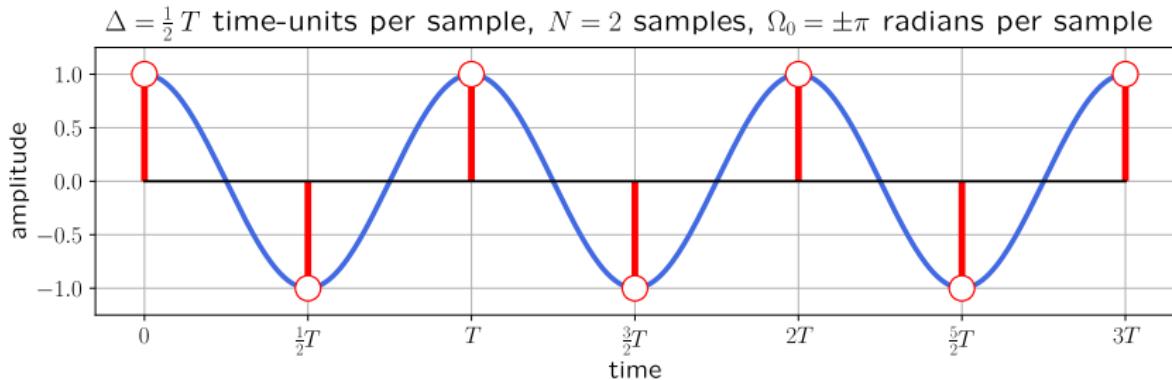


At times, we may only be sensitive to the magnitude (and not the sign) of the frequency — like when listening to audio. So, sometimes we can simplify the previous plot.

Demonstration: What does aliasing sound like?

Aliasing and the Sampling Theorem

Hand-wavy “proof by picture” of the sampling theorem:
It takes **at least 2 samples per cycle** to preserve the information in a sinusoid. $\Delta \leq \frac{1}{2}T \iff f_s \geq 2f_0$. QED.



Sampling theorem: Suppose that f_{\max} is the highest non-zero frequency in a CT signal. A sampling rate $f_s \geq 2f_{\max}$ will prevent aliasing in frequencies $|f| \leq f_{\max}$.

Lessons Learned

Discrete-time (DT) signals result from **sampling** continuous-time (CT) signals.

Sampling: $x[n] \triangleq x(n\Delta)$, where $\Delta = \frac{1}{f_s}$ is the sampling interval. Brackets matter! Unless $\Delta = 1$, $x[n] \neq x(n)$.

Aliasing: Sometimes, $x_1[n] = x_2[n]$ even if $x_1(t) \neq x_2(t)$. Different continuous-time signals may yield the same set of discrete-time samples! (Generally undesirable.)

Sampling theorem: Suppose that f_{\max} is the highest non-zero frequency in a CT signal. A sampling rate $f_s \geq 2f_{\max}$ will prevent aliasing in frequencies $|f| \leq f_{\max}$.