

# 6.300: Signal Processing

## Fourier Series

The **synthesis equation** tells us how to represent a periodic signal as a Fourier series.

$$f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

The **analysis equations** tell us how to calculate these Fourier series coefficients.

$$c_0 = \frac{1}{T} \int_T f(t) dt \quad \text{average value over a period}$$

$$c_k = \frac{2}{T} \int_T f(t) \cos\left(k \frac{2\pi}{T} t\right) dt \quad \text{for } k \geq 1$$

$$d_k = \frac{2}{T} \int_T f(t) \sin\left(k \frac{2\pi}{T} t\right) dt \quad \text{for } k \geq 1$$

## Agenda for Recitation

---

- Signals (and **transformations** thereof)
- **Fourier series** expansion for periodic signals

## Agenda for Recitation

---

- Signals (and **transformations** thereof)
- **Fourier series** expansion for periodic signals

What are you hoping to get out of 6.300?

# Agenda for Recitation

---

- Signals (and **transformations** thereof)
- **Fourier series** expansion for periodic signals

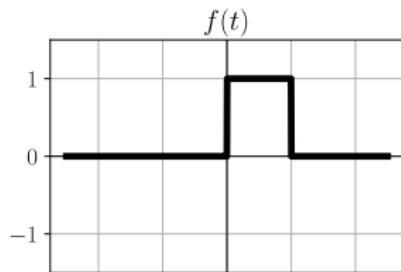
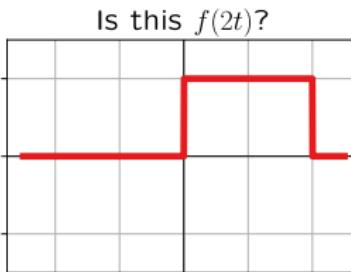
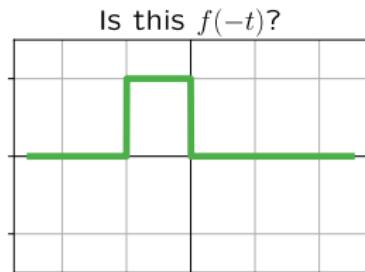
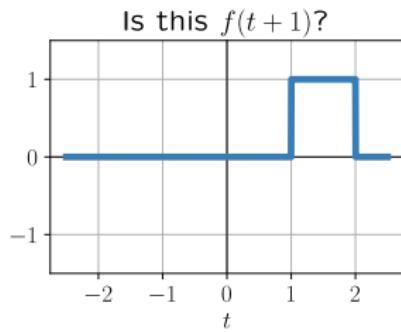
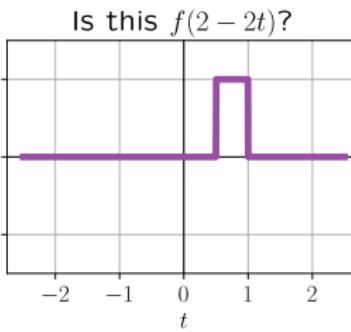
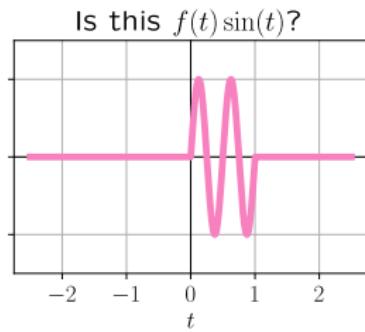
What are you hoping to get out of 6.300?

**Fourier methods** are fundamental to signal processing  
— and to many other fields of science and engineering!

- acoustics, electromagnetics, and optics
- audio, speech, and music processing
- biomedicine (ECG, EEG, MRI)
- communications
- control
- oceanography, radio astronomy, and seismology
- remote sensing (RADAR, SONAR, LIDAR)

# Transformations

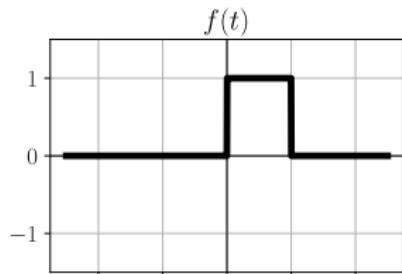
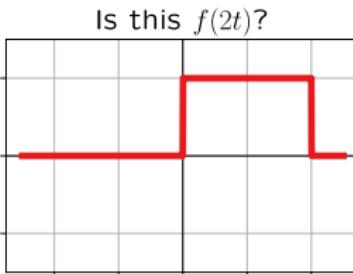
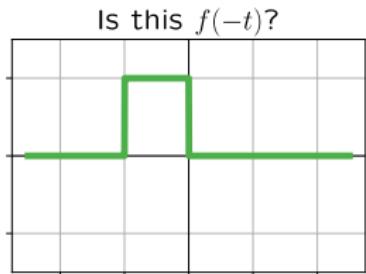
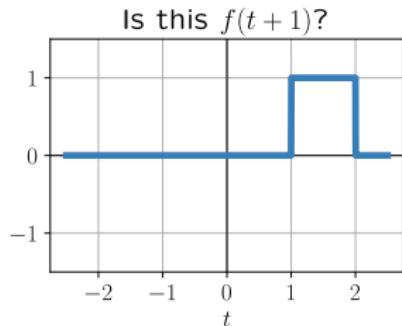
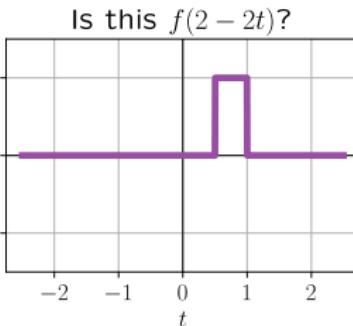
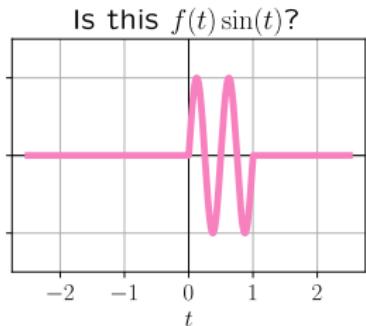
How many expressions match the plot beneath them?



# Transformations

How many expressions match the plot beneath them?

**Answer:** 2  $\rightarrow f(-t)$  and  $f(2 - 2t)$



## Series Expansions

---

In lecture, Professor Freeman analyzed a periodic signal  $f(t) = f(t + T)$  using a **Fourier series** expansion.

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

## Series Expansions

---

In lecture, Professor Freeman analyzed a periodic signal  $f(t) = f(t + T)$  using a **Fourier series** expansion.

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

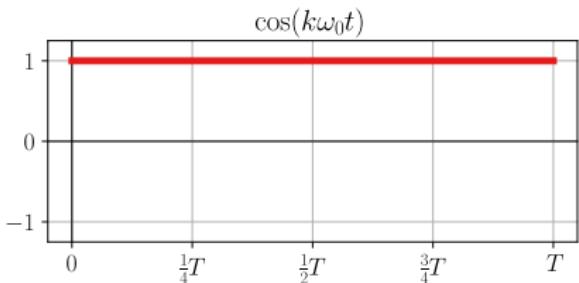
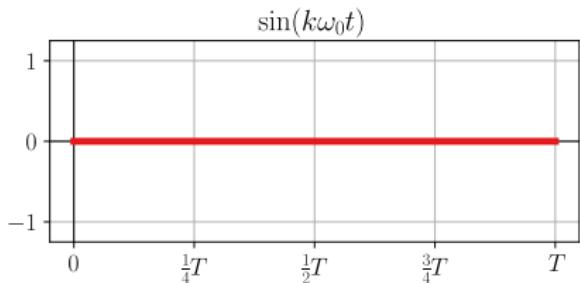
A Fourier series is a **sum of harmonically-related sinusoids**. That is, each sinusoid oscillates at an integer multiple  $k$  of the fundamental frequency  $\omega_0 \triangleq 2\pi/T$ .

# Series Expansions

In lecture, Professor Freeman analyzed a periodic signal  $f(t) = f(t + T)$  using a **Fourier series** expansion.

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

A Fourier series is a **sum of harmonically-related sinusoids**. That is, each sinusoid oscillates at an integer multiple  $k$  of the fundamental frequency  $\omega_0 \triangleq 2\pi/T$ .



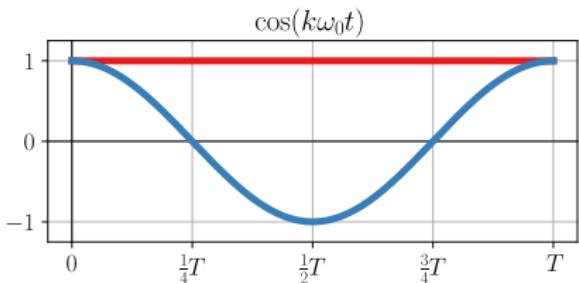
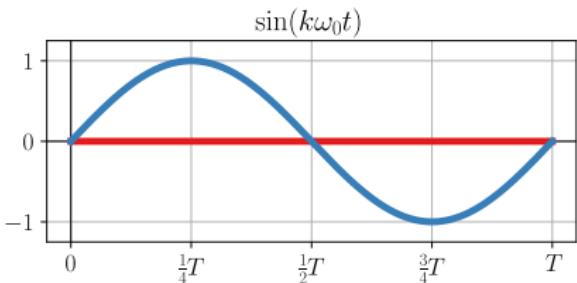
—  $k = 0$

# Series Expansions

In lecture, Professor Freeman analyzed a periodic signal  $f(t) = f(t + T)$  using a **Fourier series** expansion.

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

A Fourier series is a **sum of harmonically-related sinusoids**. That is, each sinusoid oscillates at an integer multiple  $k$  of the fundamental frequency  $\omega_0 \triangleq 2\pi/T$ .



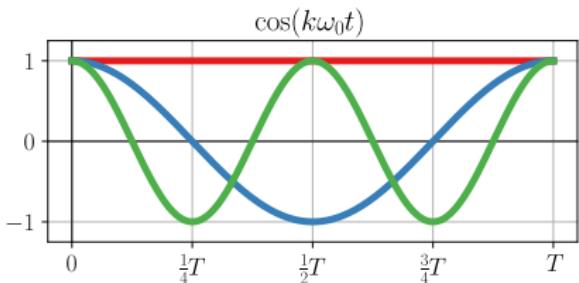
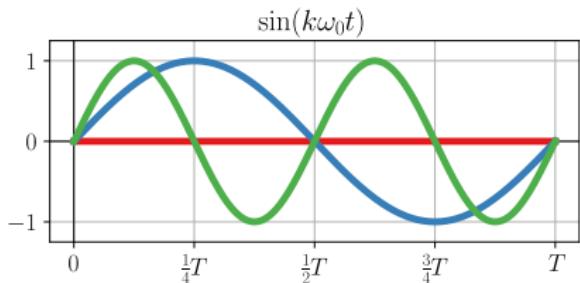
$k = 0$        $k = 1$

# Series Expansions

In lecture, Professor Freeman analyzed a periodic signal  $f(t) = f(t + T)$  using a **Fourier series** expansion.

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

A Fourier series is a **sum of harmonically-related sinusoids**. That is, each sinusoid oscillates at an integer multiple  $k$  of the fundamental frequency  $\omega_0 \triangleq 2\pi/T$ .



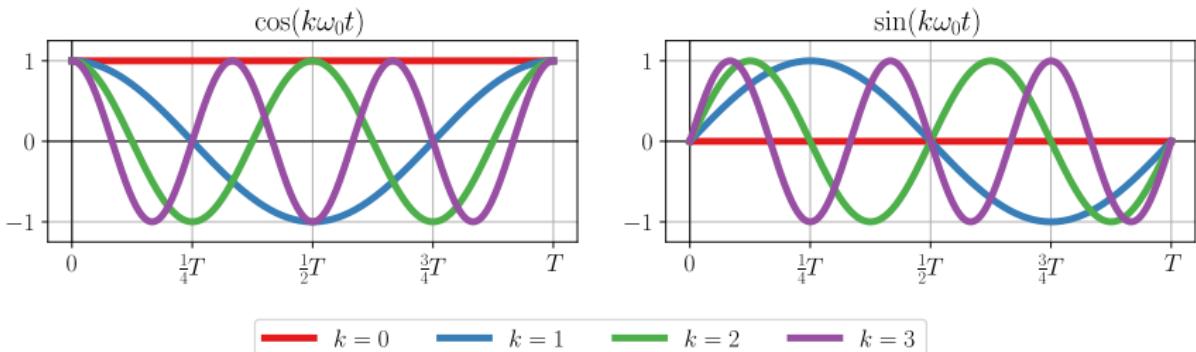
—  $k = 0$    —  $k = 1$    —  $k = 2$

# Series Expansions

In lecture, Professor Freeman analyzed a periodic signal  $f(t) = f(t + T)$  using a **Fourier series** expansion.

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

A Fourier series is a **sum of harmonically-related sinusoids**. That is, each sinusoid oscillates at an integer multiple  $k$  of the fundamental frequency  $\omega_0 \triangleq 2\pi/T$ .

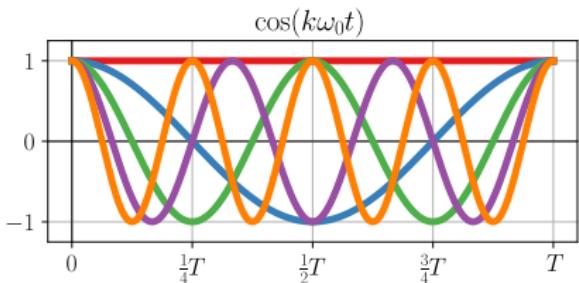
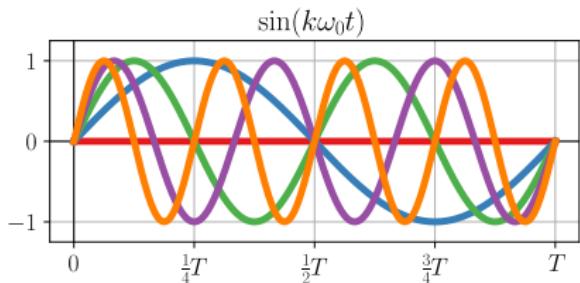


# Series Expansions

In lecture, Professor Freeman analyzed a periodic signal  $f(t) = f(t + T)$  using a **Fourier series** expansion.

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

A Fourier series is a **sum of harmonically-related sinusoids**. That is, each sinusoid oscillates at an integer multiple  $k$  of the fundamental frequency  $\omega_0 \triangleq 2\pi/T$ .



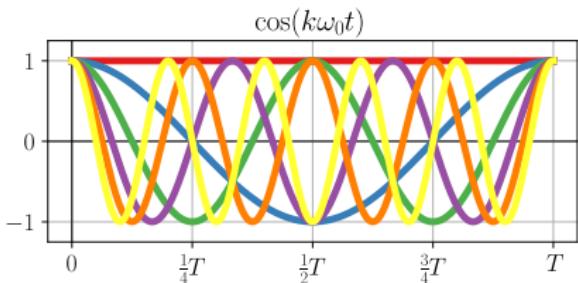
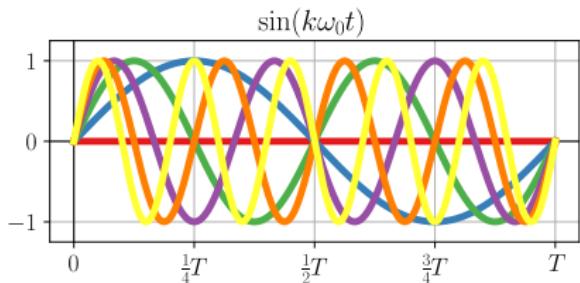
Legend:  $k = 0$  (red),  $k = 1$  (blue),  $k = 2$  (green),  $k = 3$  (purple),  $k = 4$  (orange)

# Series Expansions

In lecture, Professor Freeman analyzed a periodic signal  $f(t) = f(t + T)$  using a **Fourier series** expansion.

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

A Fourier series is a **sum of harmonically-related sinusoids**. That is, each sinusoid oscillates at an integer multiple  $k$  of the fundamental frequency  $\omega_0 \triangleq 2\pi/T$ .



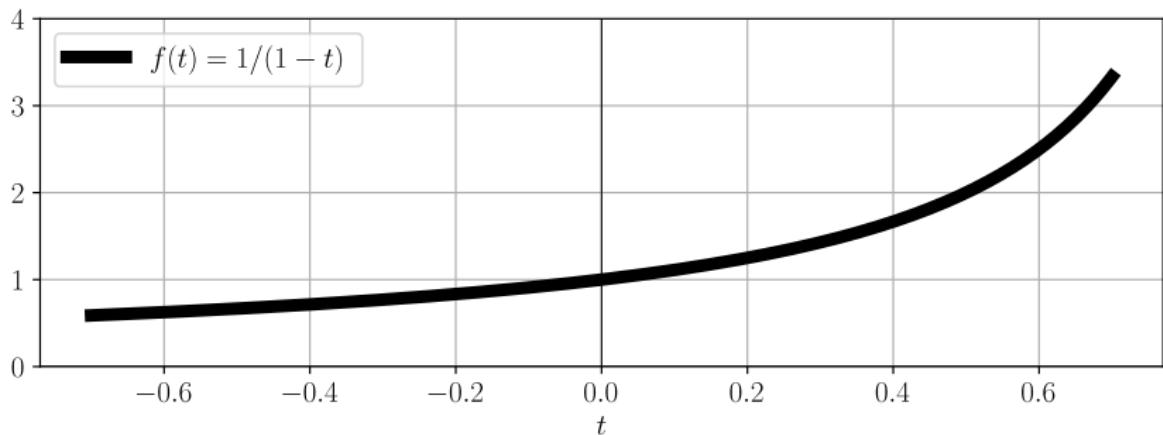
$k = 0$   $k = 1$   $k = 2$   $k = 3$   $k = 4$   $k = 5$

# Series Expansions

---

While we'll focus on **Fourier methods** in this subject, you might be familiar with another kind of expansion. A **Taylor series** yields a polynomial approximation.

$$f(t) = \frac{1}{1-t}$$

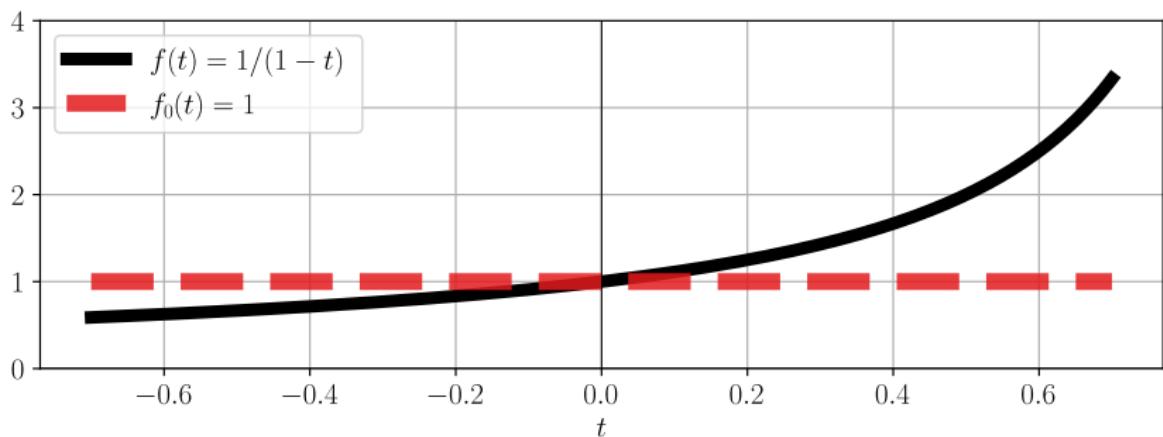


# Series Expansions

---

While we'll focus on **Fourier methods** in this subject, you might be familiar with another kind of expansion. A **Taylor series** yields a polynomial approximation.

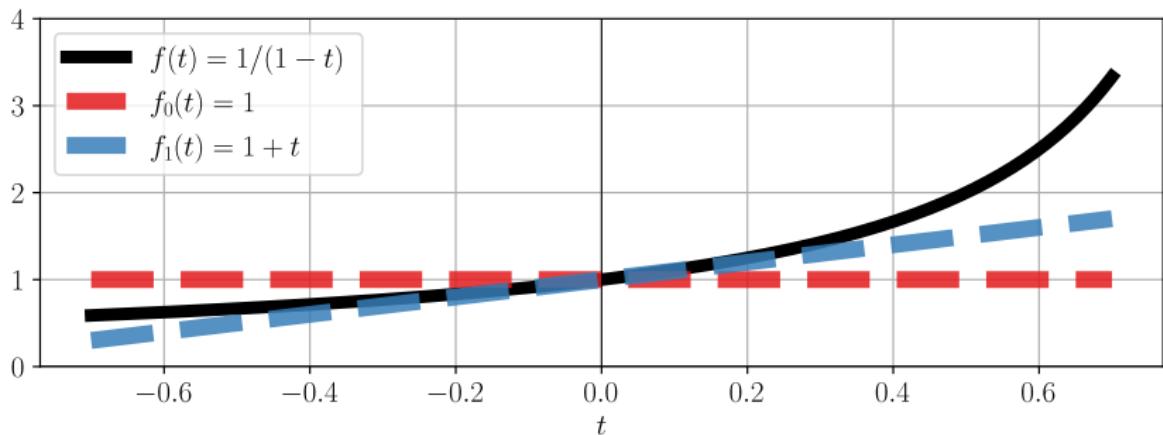
$$f(t) = \frac{1}{1-t} \approx 1 \text{ for } t \approx 0$$



# Series Expansions

While we'll focus on **Fourier methods** in this subject, you might be familiar with another kind of expansion. A **Taylor series** yields a polynomial approximation.

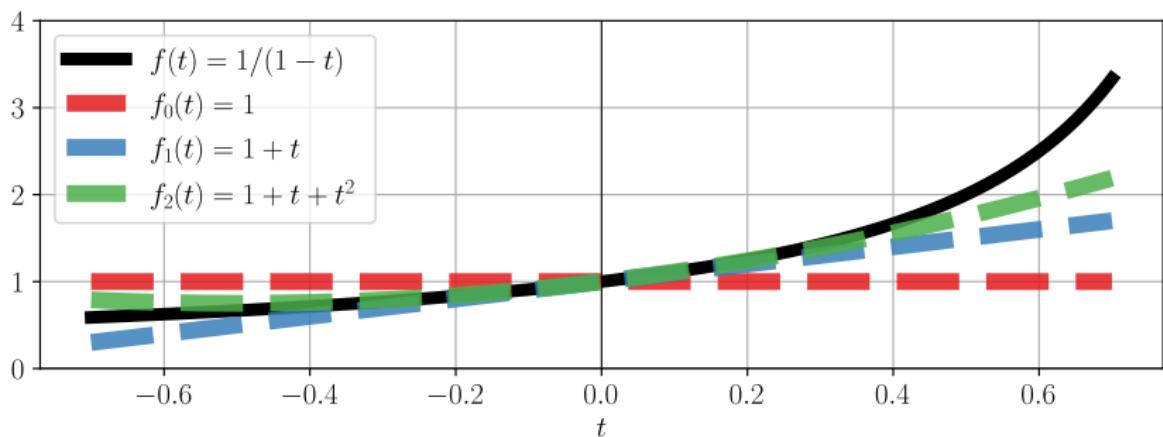
$$f(t) = \frac{1}{1-t} \approx 1 + t \text{ for } t \approx 0$$



# Series Expansions

While we'll focus on **Fourier methods** in this subject, you might be familiar with another kind of expansion. A **Taylor series** yields a polynomial approximation.

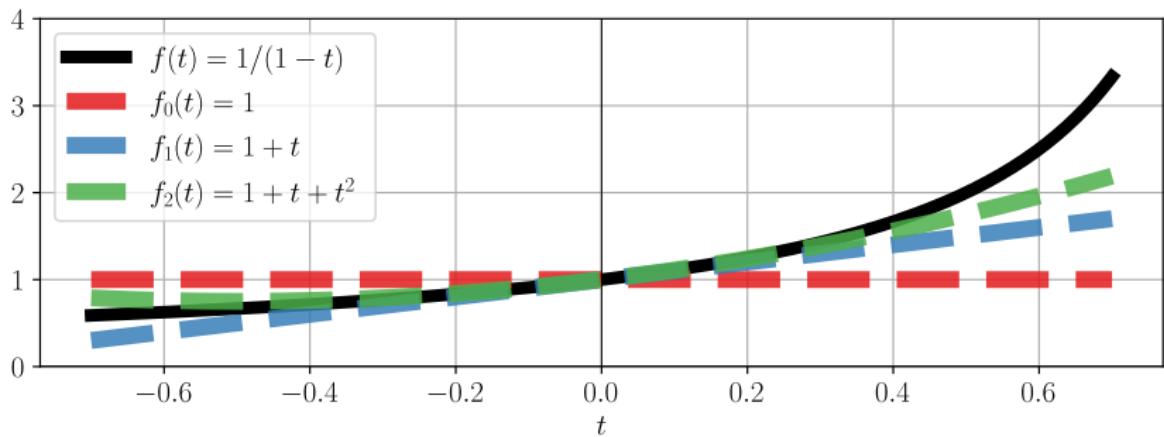
$$f(t) = \frac{1}{1-t} \approx 1 + t + t^2 \text{ for } t \approx 0$$



# Series Expansions

While we'll focus on **Fourier methods** in this subject, you might be familiar with another kind of expansion. A **Taylor series** yields a polynomial approximation.

$$f(t) = \frac{1}{1-t} \approx 1 + t + t^2 \text{ for } t \approx 0$$



(No, you don't need to know this for the quiz.)

## Series Expansions

---

Polynomials are simple to work with — hence the utility of Taylor series. So, what's the use of Fourier methods?

Why Fourier? Why not Taylor?

# Fourier Series

---

A **Fourier series** expansion takes the form

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right).$$

How do we determine the **coefficients**, though?

# Fourier Series

---

A **Fourier series** expansion takes the form

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right).$$

How do we determine the **coefficients**, though?

In lecture, Professor Freeman derived formulæ by exploiting the **orthogonality** (perpendicularity) of harmonically-related sinusoids over a length- $T$  interval.

$$c_0 = \frac{1}{T} \int_T f(t) dt$$

$$c_k = \frac{2}{T} \int_T f(t) \cos\left(k \frac{2\pi}{T} t\right) dt \quad (\text{for } k \geq 1)$$

$$d_k = \frac{2}{T} \int_T f(t) \sin\left(k \frac{2\pi}{T} t\right) dt \quad (\text{for } k \geq 1)$$

# Fourier Series

---

In lecture, Professor Freeman derived formulæ . . .

$$c_0 = \frac{1}{T} \int_T f(t) dt$$

$$c_k = \frac{2}{T} \int_T f(t) \cos\left(k \frac{2\pi}{T} t\right) dt \text{ (for } k \geq 1\text{)}$$

$$d_k = \frac{2}{T} \int_T f(t) \sin\left(k \frac{2\pi}{T} t\right) dt \text{ (for } k \geq 1\text{)}$$

Let  $f(t) = f(t+2\pi) = \cos(t)$ . Determine the coefficients for a Fourier series expansion of the form

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right).$$

# Fourier Series

---

In lecture, Professor Freeman derived formulæ . . .

$$c_0 = \frac{1}{T} \int_T f(t) dt$$

$$c_k = \frac{2}{T} \int_T f(t) \cos\left(k \frac{2\pi}{T} t\right) dt \text{ (for } k \geq 1\text{)}$$

$$d_k = \frac{2}{T} \int_T f(t) \sin\left(k \frac{2\pi}{T} t\right) dt \text{ (for } k \geq 1\text{)}$$

Let  $f(t) = f(t+2\pi) = \cos(t)$ . Determine the coefficients for a Fourier series expansion of the form

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right).$$

**$c_1 = 1$ . All other coefficients are zero.**

# Sums of Sinusoids

A **Fourier series** expansion takes the form

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right).$$

How many of the functions below have **only one** non-zero Fourier series coefficient?

- $f_1(t) = \cos\left(t - \frac{\pi}{2}\right)$
- $f_2(t) = \cos^2(t)$
- $f_3(t) = \sin(t) \cos(t)$
- $f_4(t) = 4 \cos^3(t) - 3 \cos(t)$
- $f_5(t) = \cos(12t) \cos(4t) \cos(2t)$

Hint: Do you need to integrate?

**Trigonometric identities** are given on the next slide.

# Sums of Sinusoids

---

## Trigonometric Identities

(not comprehensive)

$$\cos^2(\theta) = \frac{1}{2} + \frac{1}{2} \cos(2\theta)$$

$$\sin^2(\theta) = \frac{1}{2} - \frac{1}{2} \cos(2\theta)$$

$$\sin(\alpha \pm \beta) = \sin(\alpha) \cos(\beta) \pm \cos(\alpha) \sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha) \cos(\beta) \mp \sin(\alpha) \sin(\beta)$$

$$\cos(\alpha) \cos(\beta) = \frac{1}{2} \cos(\alpha + \beta) + \frac{1}{2} \cos(\alpha - \beta)$$

$$\sin(\alpha) \sin(\beta) = \frac{1}{2} \cos(\alpha - \beta) - \frac{1}{2} \cos(\alpha + \beta)$$

$$\sin(\alpha) \cos(\beta) = \frac{1}{2} \sin(\alpha + \beta) + \frac{1}{2} \sin(\alpha - \beta)$$

$$\cos(\alpha) \sin(\beta) = \frac{1}{2} \sin(\alpha + \beta) - \frac{1}{2} \sin(\alpha - \beta)$$

Don't worry if your trigonometry is rusty. We'll soon find a way to replace all this trigonometry with simple algebra.

# Sums of Sinusoids

How many of the functions below have **only one** non-zero Fourier series coefficient? **3**  $\rightarrow f_1, f_3, f_4$

- $f_1(t) = \cos\left(t - \frac{\pi}{2}\right) = \sin(t)$
- $f_2(t) = \cos^2(t) = \frac{1}{2} + \frac{1}{2} \cos(2t)$
- $f_3(t) = \sin(t) \cos(t) = \frac{1}{2} \sin(2t)$
- $f_4(t) = 4 \cos^3(t) - 3 \cos(t) = \cos(3t)$
- $f_5(t) = \dots = \frac{1}{4} \cos(6t) + \frac{1}{4} \cos(10t) + \frac{1}{4} \cos(14t) + \frac{1}{4} \cos(18t)$

## Periodicity

---

Let  $f(t) = \cos(t) + \cos(2\pi t)$ . Determine the coefficients for a Fourier series expansion of the form

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right).$$

If such an expansion is not possible, explain why.

## Periodicity

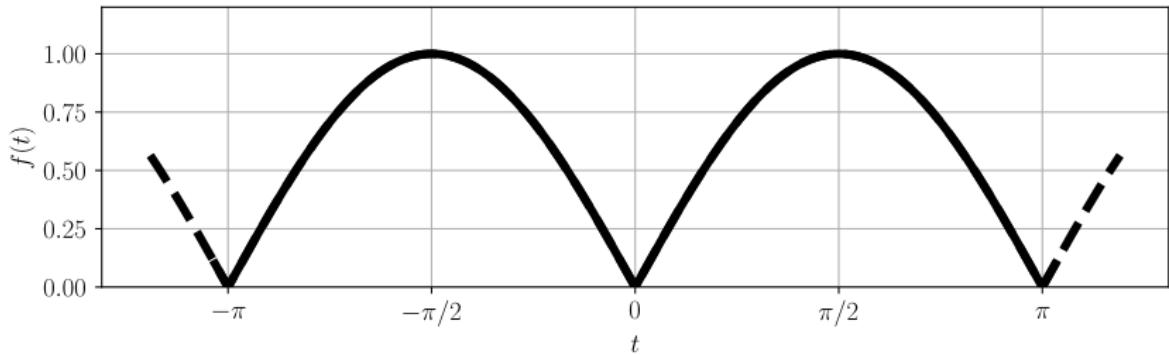
Let  $f(t) = \cos(t) + \cos(2\pi t)$ . Determine the coefficients for a Fourier series expansion of the form

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right).$$

If such an expansion is not possible, explain why.

$\cos(t)$  is periodic in  $T_1 = 2\pi$ , while  $\cos(2\pi t)$  is periodic in  $T_2 = 1$ . There is no  $T > 0$  for which  $\cos(t) = \cos(t + T)$  and  $\cos(2\pi t) = \cos(2\pi(t + T))$  for all  $t$ . That is,  $f(t)$  is **aperiodic** — and hence  $f(t)$  has no Fourier series representation.

# Rectified Sine



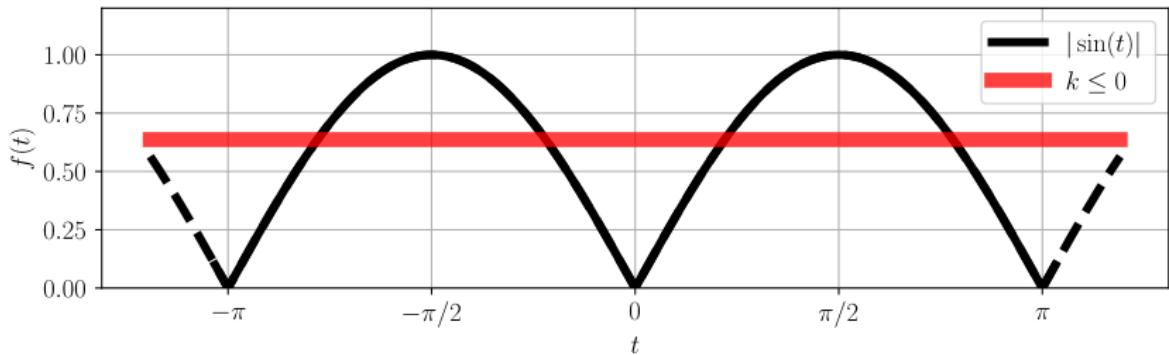
Let  $f(t) = |\sin(t)|$ , as shown above.

First, estimate the value of  $c_0$  graphically.

Then determine the coefficients for a Fourier series expansion of the form

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right).$$

# Rectified Sine



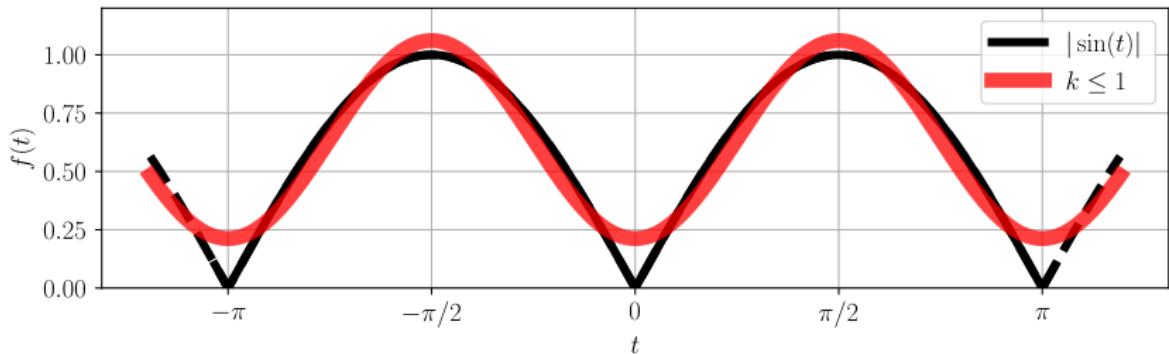
$c_0$  is the average value over one period. It looks like the value of  $c_0$  should be somewhere between 0.5 and 1.

$$c_0 = \frac{1}{T} \int_T f(t) dt = \frac{1}{\pi} \int_0^\pi \sin(t) dt = \frac{2}{\pi} \approx 0.64$$

The function is symmetric about  $t = 0$ , so  $d_k = 0$  for all  $k$ .

$$c_k = \frac{2}{\pi} \int_0^\pi \sin(t) \cos(2kt) dt = \frac{-4/\pi}{4k^2 - 1} \text{ for } k \geq 1$$

# Rectified Sine



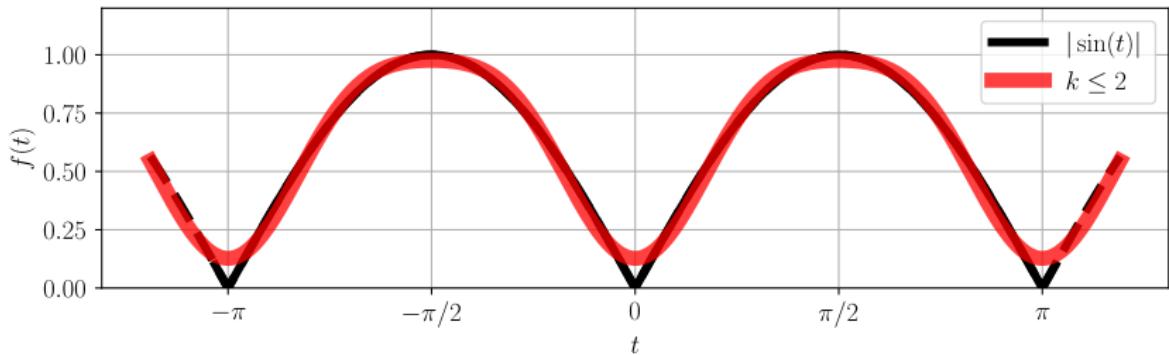
$c_0$  is the average value over one period. It looks like the value of  $c_0$  should be somewhere between 0.5 and 1.

$$c_0 = \frac{1}{T} \int_T f(t) dt = \frac{1}{\pi} \int_0^\pi \sin(t) dt = \frac{2}{\pi} \approx 0.64$$

The function is symmetric about  $t = 0$ , so  $d_k = 0$  for all  $k$ .

$$c_k = \frac{2}{\pi} \int_0^\pi \sin(t) \cos(2kt) dt = \frac{-4/\pi}{4k^2 - 1} \text{ for } k \geq 1$$

# Rectified Sine



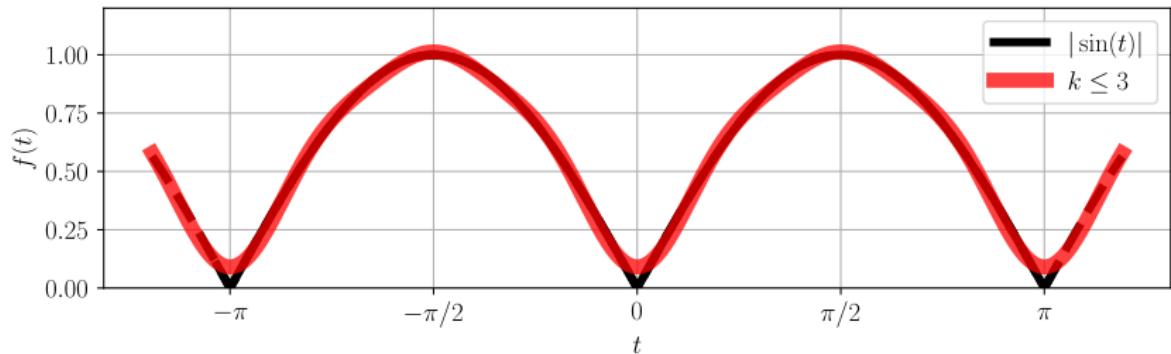
$c_0$  is the average value over one period. It looks like the value of  $c_0$  should be somewhere between 0.5 and 1.

$$c_0 = \frac{1}{T} \int_T f(t) dt = \frac{1}{\pi} \int_0^\pi \sin(t) dt = \frac{2}{\pi} \approx 0.64$$

The function is symmetric about  $t = 0$ , so  $d_k = 0$  for all  $k$ .

$$c_k = \frac{2}{\pi} \int_0^\pi \sin(t) \cos(2kt) dt = \frac{-4/\pi}{4k^2 - 1} \text{ for } k \geq 1$$

# Rectified Sine



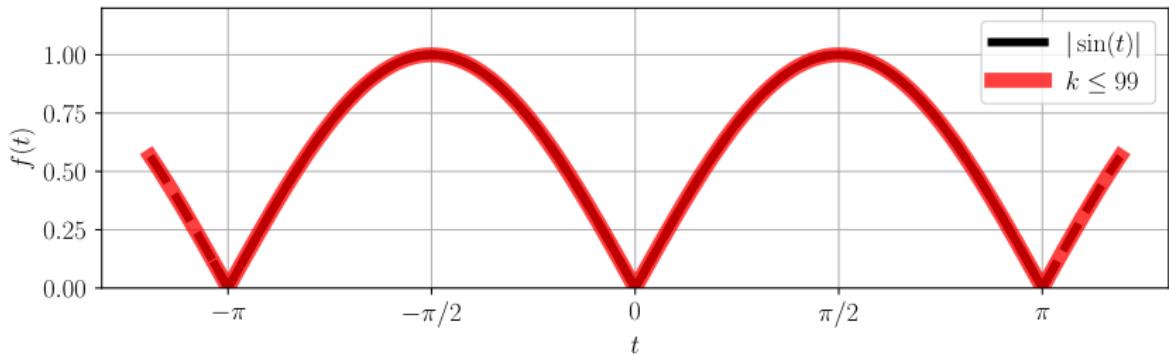
$c_0$  is the average value over one period. It looks like the value of  $c_0$  should be somewhere between 0.5 and 1.

$$c_0 = \frac{1}{T} \int_T f(t) dt = \frac{1}{\pi} \int_0^\pi \sin(t) dt = \frac{2}{\pi} \approx 0.64$$

The function is symmetric about  $t = 0$ , so  $d_k = 0$  for all  $k$ .

$$c_k = \frac{2}{\pi} \int_0^\pi \sin(t) \cos(2kt) dt = \frac{-4/\pi}{4k^2 - 1} \text{ for } k \geq 1$$

# Rectified Sine



$c_0$  is the average value over one period. It looks like the value of  $c_0$  should be somewhere between 0.5 and 1.

$$c_0 = \frac{1}{T} \int_T f(t) dt = \frac{1}{\pi} \int_0^\pi \sin(t) dt = \frac{2}{\pi} \approx 0.64$$

The function is symmetric about  $t = 0$ , so  $d_k = 0$  for all  $k$ .

$$c_k = \frac{2}{\pi} \int_0^\pi \sin(t) \cos(2kt) dt = \frac{-4/\pi}{4k^2 - 1} \text{ for } k \geq 1$$

# Lessons Learned

The **synthesis equation** tells us how to represent a periodic signal as a Fourier series.

$$f(t) = f(t + T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(k \frac{2\pi}{T} t\right) + \sum_{k=1}^{\infty} d_k \sin\left(k \frac{2\pi}{T} t\right)$$

The **analysis equations** tell us how to calculate these Fourier series coefficients.

$$c_0 = \frac{1}{T} \int_T f(t) dt \quad \text{average value over a period}$$

$$c_k = \frac{2}{T} \int_T f(t) \cos\left(k \frac{2\pi}{T} t\right) dt \quad \text{for } k \geq 1$$

$$d_k = \frac{2}{T} \int_T f(t) \sin\left(k \frac{2\pi}{T} t\right) dt \quad \text{for } k \geq 1$$

Do not mindlessly plug numbers into formulas!

**Think before you calculate!**

## Question of the Day

---

Let  $f(t) = \cos^2(t - \frac{\pi}{2})$ .

Make a rough sketch of  $f(t)$ .

What is the fundamental period ( $T$ )?

What is the fundamental frequency ( $\omega_0$ )?

Without resorting to calculus, determine coefficients for a Fourier series expansion of the form

$$f(t) = c_0 + \sum_{k=1}^{\infty} c_k \cos(k\omega_0 t) + \sum_{k=1}^{\infty} d_k \sin(k\omega_0 t).$$