6.3000: Signal Processing

Sinusoids and Series

e Relations between time and frequency representations of signals

e Mathematical perspectives: continuous and discontinuous functions
e Physics perspectives: Fourier representations of a vibrating string

Homework 1 is posted and is due next Thursday (Feb 12) at 2pm.

February 05, 2026



Last Time

Signals are functions that contain and convey information.

Examples:

e the MP3 representation of a sound

e the JPEG representation of a picture
e an MRI image of a brain

Signal Processing develops the use of signals as abstractions:

e identifying signals in physical, mathematical, computation contexts,
e analyzing signals to understand the information they contain, and

¢ manipulating signals to modify the information they contain.



Musical Sounds as Signals

Example signal: a musical sound can be represented as a function of time.

pressure

t [seconds]

Although this time function is a complete description of the sound, it does
not expose many of the important properties of the sound.



Check Yourself

Even determining pitch can be tricky. Consider a single piano note:

piano

IAAA NN
iawi v

9.64 ms

[ What is the fundamental frequency (pitch) of this waveform?

1. 104 Hz 2. 156 Hz 3. 311 Hz 4. 652 Hz

5. none of the above




Check Yourself

Even determining pitch can be tricky. Consider a single piano note:

piano

LA

WP

T Ty T

What is the fundamental period (smallest T' > 0 for which f(t+T)=f(t) V t)?
e T =1T; (time between positive peaks?

e T =15 (time between negative peaks?

e something else?



Check Yourself
Even determining pitch can be tricky. Consider a single piano note:

piano

LA

WP

T Ty T

What is the fundamental period (smallest T' > 0 for which f(t+T)=f(t) V t)?
e T =1T; (time between positive peaks?

e T =15 (time between negative peaks?

e something else?

The smallest T>0 for which f(t+T1)=f(t) for all t is T=T2=(9.64/3) ms.

The corresponding frequency is f=1/(9.64/3)=311 Hz.



Vs

Check Yourself

Even determining pitch can be tricky. Consider a single piano note:

piano

IAAA NN
iawi v

9.64 ms

[ What is the fundamental frequency (pitch) of this waveform? 3 j

1. 104 Hz 2. 156 Hz 3. 311 Hz 4. 652 Hz
5. none of the above

This is an example of the close relation between frequency and time.
Fourier series — more general relations between frequency and time.




Last Time: Signals as Sums of Sinusoids

Fourier series express explicit functions of time (e.g., f(t)) as explicit sums
of single-frequency components (sin(kw,t) and cos(kw,t)).
o
fit)=f(t+7) = (¢ cos kwot + dy; sin kw,t)
k=0

cos(2w,t) cos(wyt) cos(0t)



Fourier Series Representation

The original function of time (f(t)) is replaced by a sum of discrete, single-
frequency components.

ft)=ft+7T) = (ck cos kwot + dj sin kw,t) = Z my, cos (kwot + ¢)
k=0 k=0

d
where m} = ¢ + d? and tan ¢, = —.

Ck
!lv]lllw

wo 2w0 3(/.}0 4(/.)0 5(/.10 6&)0

< harmonic #

DC - O

fundamental — —
274 harmonic — N
374 harmonic — @
4" harmonic —
5" harmonic — 1
6t" harmonic — &



Viewing a Signal as a Fourier Series

Fourier Series provide an alternative view of information contained in f(t).

f() = Z my, cos(kwot + o)

k=0
= my cos(wot+@1) + ma cos(2wot+ o) + m3 cos(3wot+¢3) + - - -

freq

Two views: as a function of time and as a function of frequency



Fourier Series Representation of Piano Note
Viewing a signal as a function of time or as a Fourier series highlights
different (complementary) information.

piano piano

For example, the time function highlights periodicity, while the Fourier
series highlights the distribution of energy across frequency.

Differences in apparent periodicity of the positive and negative peaks in
time show up as separate components at k=1 and k=2 in frequency.

Higher order frequency omponents are more apparent in the Fourier series
than in time. Notice for example that the k=3 term is especially small.



Last Time

Dissonance is more easily recognized in the Fourier representation.

octave (D+D’) fifth (D+A) D+Eb

UL FrT T T T T 1111
101112 01234567 89101112

T T T T T1TTT
23456789
time(periods of "D")
D' A Eb
01 2 3 4 5 6 7 01234567829 0123456789
0123456789 0123456789 0123456789

D D harmonics D



Vs

Check Yourself

The Fourier series for each of five periodic signals (f,(t)—f.(t)) contain
just three nonzero components at frequencies shown by bars below:

ol || |
" f[HZ]
0123456 78 910111213

o | L1
" f[HZ]
0123456 78910111213

£ | | | 1
et f[HZ]
0123456 78 910111213

Y I
F————t—t———r f[HZ]
0123456 78 910111213

o | 1
f —— "t f[HZ]
0123456 78 910111213

Which Fourier series has the largest fundamental period?

1. fa(t) 2. fb(t) 3. fc(t) 4. fd(t) 5. fe(t)




Check Yourself

The Fourier series for each of five periodic signals (f,(t)—fc(t)) contain just
three nonzero components at frequencies shown by bars below:

fult) | || [ ‘
e e e e 5 A B S B R f[HZ] v/(] =2Hz
0123456 738 910111213

5| | 1 1 . ,

T T T 1T Tt f[HZ] ,flJ =3Hz

0123456 738 910111213

10 | | | | ,
-ttt f[HZ] fo=2Hz
0123456 78 910111213

fat) | | | |
S e e S B S B B f[HZ] fo =4Hz
0123456 78 910111213

1 | | | |
S e e e L S B S B B f[HZ] fn =1Hz
0123456 738 910111213

Which Fourier series has the largest fundamental period?

1. fa(t) 2. fb(t) 3. fc(t) 4. fd(t) 5. fe(t)
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Check Yourself

) | || I

e T=1/2s
0123456 78 910111213

o) | | | |
" f[HZ] T=1/3s
0123456 78 910111213

5 | | | |
et r—r f[HZ] T=1/2s
0123456 78 910111213

| I I I

®© F———rt—t———r f[HZ] T=1/4s
0123456 78 910111213

1 | | | |

‘ f ———r "t f[HZ] T=1s
0123456 78 910111213

Which Fourier series has the largest fundamental period?

The Fourier series for each of five periodic signals (f,(t)—f.(t)) contain
just three nonzero components at frequencies shown by bars below:

5

1. fa(t) 2. fb(t) 3. fc(t) 4. fd(t) 5. fe(t)




Last Time: Determining Fourier Series

How do we find the coefficients ¢, and dj?

Key idea: Sift out the component of interest by
e multiplying by the corresponding basis function, and then
e integrating over a period.

This results in the following expressions for the Fourier series coefficients:

Cco = ;’/Tf(t) dt

2
ck—/f(t)cos(kwot)dt; k=1,2,3,...
T Jr

2
dy, = / f(t)sin(kwot) dt; k =1,2,3,...
T Jr



Example of Analysis

Find the Fourier series coefficients for the following triangle wave:

ft) = ft+2)

—1
| T T —1
—2 -1 0 1 2
T=2
_ 2 _
Wo="m =7
1 (7 1 [?
== t)dt = - t)dt = -
0 T/f() 2/0 (1
T/2 2 k 1 4
/ z :2/ tcos(ﬂkt)dt:{ 2z kodd
T/2 0 0 k=2,4,6,...

dp, =0 (by symmetry)



Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

> 1 4
f(t) =co+ ; (cr cos(kwot) + di sin(kwot)) = 5 kz_: 572
k odd
0
4
— Z Wcos(kﬂ't)
k=1
k odd
T T T T t
-2 -1 1 2

e}




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

f(t) =co+ Z (cx cos(kwot) + di sin(kwot)) = % - E 7r24k2

k=1 k=

k odd
1 1

f(t) = o Z 27}{20%(14:7715)

k=1

k odd

ft)




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

- , 1 4

f(t) =co+ ; (¢ cos(kwot) + di sin(kwot)) = 5 kz_: 572 cos(kmt)
k odd
3
1 4

fit) =5 - > 5z cos(knt)

k=1

k odd

ft)




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

- , 1 4

f(t) =co+ ; (¢ cos(kwot) + di sin(kwot)) = 5 kz_: 572 cos(kmt)
k odd
)
1 4

fit) =5 - > 5z cos(knt)

k=1

k odd

ft)




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

- , 1 4

f(t) =co+ ; (¢ cos(kwot) + di sin(kwot)) = 5 kz_: 572 cos(kmt)
k odd
7
1 4

fit) =5 - > 5z cos(knt)

k=1

k odd

ft)




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

- , 1 4

f(t) =co+ ; (¢ cos(kwot) + di sin(kwot)) = 5 kz_: 572 cos(kmt)
k odd
9
1 4

fit) =5 - > 5z cos(knt)

k=1

k odd

ft)




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

- , 1 4

f(t) =co+ ; (¢ cos(kwot) + di sin(kwot)) = 5 kz_: 572 cos(kmt)
k odd
19
1 4

f(t) = 5~ Z Wcos(lmt)

k=1

k odd

ft)




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

- , I - 4
f(t) =co+ ; (¢ cos(kwot) + di sin(kwot)) = 5 kz_: 572 cos(kmt)
k odd
1 % 4
fit) =5 - > 5z cos(knt)
k=1
k odd
ft)
\./.\I/.\./t
—2 -1 0 1 2

Synthesized function approaches original as number of terms increases.



Fourier Synthesis

The previous example shows that the sum of an infinite number of sinusoids
can approximate a piecewise linear function with discontinuous slope!

This result is a bit surprising since none of the basis functions have discon-
tinuous slopes.
What about signals with discontinuous values?

Fourier defended the idea that such a series is meaningful.
Lagrange ridiculed the idea that discontinuities could be generated from a
sum of continuous signals.

We can test this idea empirically — using computation.



Fourier Analysis of a Square Wave

Find the Fourier series coefficients for the following square wave:

ft) = ft+2)

1 —
t
-2 -1 0 1 2
T=2
_2m _
Wo =T =7
1T
COZT/f(t)dt /f
kmt
/ f(t) cos(kw,t) dt /cos(lmrt)d M =0for k=1,2,3,...
0 ™ o
9 T 1 1 2 _
:/ F(t) sin(kwot) dt:/ sin(krt)dt=— SSETD | { o F=135.
T Jo 0 km g 0  otherwise




Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

= 1 & 2
fit)=co+ ; (cg cos(kwot) + di sin(kwot)) = 3 + kz_: o= sin(knt)
k odd
1 0 2
ft) =5+ > - sin(krt)
k=1
k odd




Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

f(t) =co+ Z (cr cos(kwot) + di sin(kwot)) = % + E % sin(kmt)
k=1 k=
k odd
1 Z — Sm (kmt)
2
k odd
f(t)
LN A N




Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

f(t) =co+ Z (cr cos(kwot) + di sin(kwot)) = % + E % sin(kmt)

k=1 k=

k odd
1 3 2

ft)y=5+ > o—sin(krt)

k=1

k odd

f(t)
VAANY SANVA




Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

- . 1, « 2

f(t) =co+ ; (cg cos(kwot) + di sin(kwot)) = 5 + kz_: - sin(kmt)
k odd
1 D 2

ft) =5+ > - sin(krt)

k=1

k odd

ft)
t



Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

- . 1, « 2

f(t) =co+ ; (cg cos(kwot) + di sin(kwot)) = 5 + kz_: - sin(kmt)
k odd
1 U 2

ft) =5+ > - sin(krt)

k=1

k odd

ft)
t



Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

- . 1, « 2

f(t) =co+ ; (cg cos(kwot) + di sin(kwot)) = 5 + kz_: - sin(kmt)
k odd
1 ) 2

ft) =5+ > - sin(krt)

k=1

k odd

ft)
t



Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

. 1 2 .
f(t) =co+ ; (cg cos(kwot) + di sin(kwot)) = 5 + kz_: p sin(kmt)
k odd
L + Z -8 (kmt)
=3 — sin(kw
k= 1
k odd
ft)
vl |VA Avl |VA Avl t




Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

. 1 2 .
f(t) =co+ ; (cg cos(kwot) + di sin(kwot)) = 5 + kz_: - sin(kmt)
k odd




Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients
o0

. 1 2 .
f(t) =co+ ; (cg cos(kwot) + di sin(kwot)) = 5 + kz_: - sin(kmt)
k odd




Fourier Synthesis of a Square Wave

Generate f(t) from the Fourier coefficients in the previous slide.

Start with the Fourier coefficients

. &2
f(t) =co+ ; (cg cos(kwot) + di sin(kwot)) = 5 + kz_: p sin(kmt)
k odd
L + Z -8 (kmt)
=3 — sin(kw
k= 1
k odd
ft)
t
—2 -1 0 1 2

The synthesized function approaches original as number of terms increases.



Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

0

1 2
fit) =5+ > o sin(kt)
k=1
k odd f(t)
I I I I
-2 -1 0 1 2
1.09
0.91
I I I I
—0.2 —0.1 0 0.1 0.2



Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

1S
fit) =5+ > o sin(kt)
k=1
k odd f(t)
t
-2 -1 0 1 2
1.09 S




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

1 O 9
fit) =5+ > o sin(kt)
k=1
k odd f(t)
t
—2 ~1 0 1 2

1.09 —
091 ="

—F ll/ T T t

~0.2 0.1 0 0.1 0.2



Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

1 2
fit) =5+ > o sin(kt)
k=1
k odd f(t)
t
-2 -1 0 1 2




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

1 X
fit) =5+ kz—:1 o sin(kt)
k odd f(t)

/\

1.09

0.91 /

—0.2 —0.1 0 0.1 0.2



Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

1
§+ Z —sm (kmt)

k= 1
k odd f(t)
-2 -1 0 1 2
1.09




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

1
§+ Z —smlmt
k_l

k odd f(t)

1

N S




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

49

ft) = % + kzzjl % sin(kwt)
k odd f(t)
o
t
-2 -1 0 1 2




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

1
§+ Z —sm (kmt)

k= 1
k odd f(t)
P—
t
-2 —1 0 1 2




Fourier Synthesis of a Square Wave

Zoom in on the step discontinuity at t = 0.

1 199
5 + Z —sm (kmt)
k= 1
k odd f(t)
—
t
-2 -1 0 1 2
1.09 _
0.91
T T A T T t
—0.2 —0.1 0 0.1 0.2

Increasing the number of terms does not decrease the peak overshoot,
but it does shrink the region of time that is occupied by the overshoot.



Convergence of Fourier Series

If there is a step discontinuity in f(t) at ¢t = ¢y, then the Fourier series for
f(to) converges to the average of the limits of f(¢) as ¢t approaches t; from
the left and from the right.

Let fK(t) represent the partial sum of the Fourier series using just K

terms:
K

fr(t) =ao+ Z (ck cos(kwot) + dy; sin(kwot)>
k=0
As K — oo,
e the maximum difference between f(t) and fx(t) converges to ~ 9% of
£(t3) — f(ty)] and
e the region over which the absolute value of the difference exceeds any
small number € shrinks to zero.

We refer to this type of overshoot as Gibb’s Phenomenon.

So who was right? Fourier or Lagrange?



Convergence of Fourier Series

If there is a step discontinuity in f(t) at ¢t = ¢y, then the Fourier series for
f(to) converges to the average of the limits of f(¢) as ¢t approaches t; from
the left and from the right.

Let fK(t) represent the partial sum of the Fourier series using just N

terms:
K

fr(t) =ao+ Z (ck cos(kwot) + dy; sin(kwot)>
k=0
As K — oo,
e the maximum difference between f(t) and fx(t) converges to ~ 9% of

|f(tg) — f(ty)| and

e the region over which the absolute value of the difference exceeds any
small number € shrinks to zero.

We refer to this type of overshoot as Gibb’s Phenomenon.

So who was right? Fourier or Lagrange? Both!

The Fourier series of a discontinuous function converges, but not uniformly.



Using Fourier Series

The time and Fourier series representations of a signal are equivalent.
Therefore we can do signal processing tasks using either representation.

o0 o0
f@t)=f(t+7T) = Z (cr cos kwot + di, sin kw,t) = Z my, cos (kwot + i)
k=0 k=0
freq
e
" A‘ A \‘\‘ \ = ~,‘ ‘\
\7 ' A ‘ S\
\J v SN
V7 time

Furthermore, we can use properties of Fourier series to develop operations
on Fourier series that are equivalent to operations on time functions.



Properties of Fourier Series: Scaling Time
Find the Fourier series coefficients for the following square wave:

g(t) = g(t+1)
1

-2 -1 0 1 2

We could repeat the process used to find the Fourier coefficients for f(t).

f@t) = f(t+2)

—2 -1 0 1 2

Alternatively, we can take advantage of the relation between f(t) and g(t):

g(t) = f(2t)



Scaling Time

We already know the Fourier series expansion of f(t):

Z —sm (kmt) + Z —Sln (kwot)

k odd k odd

_{; k=0

Cr —

0 otherwise
2 _

c@:{m k=1,3,5,...

0 otherwise

where wg = &



Check Yourself

Let dj represent the Fourier series coefficients for f(¢) and
let d). represent those for g(t) = f(2t).

[ Which of the following relations are true?

e d; =2d,: amplitudes double

o . =dy: harmonic indicies half

e d, =d: harmonic indicies double

e dj = 2dy/,: amplitudes and harmonic indices double

o d =dy: no change




Scaling Time

We already know the Fourier series expansion of f(t):

Z —sm (kmt)

Kodd Fodd
1 _
0 otherwise
2 _
dk:{,m k=1,3,5,...
0  otherwise
where wg = 2 = & = 1.
Since g(t) = f(2t) it follows that
g(t) = = + Z —sm (km2t) =

Kodd

1
2

+ Z —Sln (kwot)

o0

2
+ Z Esm(kwlt)

k=1
k odd

The Fourier series coefficients for g(t) are thus identical to those of f(¢).
Only the fundamental frequency has changed, from w, = 7 to wi = 27.



Scaling Time

The Fourier series coefficients for g(t) are thus identical to those of f(t).

F(t) = F(t+2) di
[, <«
|
-2 -1 0 1 2 k
01 10
d,

01 10

Compressing the time axis has no effect on the coefficients’ dependence
on k. Only the fundamental frequency has changed.



Check Yourself

Let dj represent the Fourier series coefficients for f(¢) and
let d). represent those for g(t) = f(2t).

[ Which of the following relations are true? j

e d; =2d;: amplitudes double X

o . = dy: harmonic indicies half X

e d, =d: harmonic indicies double X

e dj =2dy/,: amplitudes and harmonic indices double X

o d =dy: no change




Scaling Time

Plot the Fourier series coefficients on a frequency scale.

dg
f@t) = f(t+2)
|— <
—t
-2 -1 0 1 2 0w 1071
dj,

—to

-2 -1 0 1 2 —
0w 107

Compressing the time axis has stretched the w axis.



Check Yourself

What is the effect of shifting time?
Assume that f(t) is periodic in time with period T

f@t) = f+T).
Let g(t) represent a version of f(t) shifted by half a period:

g9(t) = f(t=T/2).

[ How many of the following statements correctly describe the }

effect of this shift on the Fourier series coefficients.

e cosine coefficients ¢, are negated

e sine coefficients d; are negated

e odd-numbered coefficients ¢y, d1,c3,ds, ... are negated

e sine and cosine coefficients are swapped: ¢ — di and dp — ¢




What is the Effect of Shifting Time?

Let ¢ and ¢}, represent the cosine coefficients of f(t) and g(t) respectively.
9 T
Ch= / f(t) cos(kw,t) dt
Ck— / ) cos(kw,t) dt
= T/o f(t=T/2) cos(kw,t) dt | g(t) = f(t—=T/2)
9 T
— T/ f(s)cos(kwy(s+T/2))ds | s=t=T/2
0
9 T
= T/ f(s) cos(kwys+kw,T'/2) ds | distribute kw, over sum
0
9 T
= / f(s) cos(kwos+km) ds | wo = 27/T

/ f(s) cos(kwys)(—1)"ds | cos(a+b) = cosacosb — sinasinb

= (=1)%c | pull (=1)* outside integral



What is the Effect of Shifting Time?

Let d; and dj, represent the sine coefficients of f(t) and g(t) respectively.

di= 2 /T f(t) sin(kw,t) dt

S

) sin(kw,t) dt

= T/o f(t=T/2)sin(kwot)dt | g(t) = f(t—T/2)

T
= ;/0 f(s)sin(kwy(s+T1/2))ds | s =t=T/2

) T
= T/ f(s) sin(kwys+kw,1'/2) ds | distribute kw, over sum
0

T
= 2/ f(s)sin(kwos+km) ds | wo =27/T

/ f(s)sin(kwys)(—1)*ds | sin(a+b) = sinacosb+ cosasinb

= (-1

)rdy,

| pull (=1)* outside integral



Check Yourself: Alternative (more intuitive) Approach

Shifting f(t) shifts the underlying basis functions of it Fourier expansion.

ft=T/2) = Z ¢k cos (kwo(t—T/2)) + Z dy sin (kw,o(t—T'/2))

cos(3w,t) cos(2w,t) cos(wet) cos(0t)

k=0

cosine basis functions

t
2r

wo

delayed ha

If a period

Half-period shift inverts odd harmonics. No effect on even harmonics.



Check Yourself: Alternative (more intuitive) Approach

Shifting f(t) shifts the underlying basis functions of it Fourier expansion.

ft=T/2) = Z ¢k cos (kwo(t—T/2)) + Z dy sin (kw,o(t—T'/2))

k=0 k=1
sine basis functions delayed half a period
5
= — —
k7 27 2m
wo wo

sin(3w,t) sin(2w,t) sin(w,t)

wo wWo
RVAVAVE AUAA
L v
wWo : wWo

Half-period shift inverts odd harmonics. No effect on even harmonics.



Check Yourself

What is the effect of shifting time?
Assume that f(t) is periodic in time with period T

f@) = f+T).
Let g(t) represent a version of f(t) shifted by half a period:

g9(t) = f(t=T/2).

How many of the following statements correctly describe the
effect of this shift on the Fourier series coefficients? 1

|

e cosine coefficients c; are negated X

e sine coefficients dj are negated X

e odd-numbered coefficients ¢y, d1,c3,ds, ... are negated v

e sine and cosine coefficients are swapped: ¢, — di and dp — ¢

X




Why Focus on Fourier Series?

What's so special about sines and cosines?

Sinusoidal functions have interesting mathematical properties.
— harmonically related sinusoids are orthogonal to each other over [O,T].

Orthogonality: f(t) and g(t) are orthogonal over 0 <t < T if
| v de=o
T
Example: Calculate this integral for the k' and I*" harmonics of cos(w,t).

/ cos(kw,t) cos(lwyt) dt
T

We can use trigonometry to express the product of the two cosines as the
sum of cosines of the sum and difference frequencies:

/T (% cos((k+l)wot) + %cos((kfl)wot)) dt

The sum and difference frequencies are also harmonics of w,, so their
integral over T is zero (provided k #1).



Why Focus on Fourier Series?

What's so special about sines and cosines?

Sinusoidal functions have interesting mathematical properties.
— harmonically related sinusoids are orthogonal to each other over [O,T].

Sines and cosines also play important roles in physics —
especially the physics of waves.



Physical Example: Vibrating String

A taut string supports wave motion.

The speed of the wave depends on the tension on and mass of the string.



Physical Example: Vibrating String

The wave will reflect off a rigid boundary.

N~

The amplitude of the reflected wave is opposite that of the incident wave.



Physical Example: Vibrating String

Reflections can interfere with excitations.

The interference can be constructive or destructive depending on the fre-
quency of the excitation.



Physical Example: Vibrating String

We get constructive interference if round-trip travel time equals the period.

. . 2L
Round-trip travel time = — =T
v

2 2 ™
Wo = —

T 2Ljv L



Physical Example: Vibrating String

We also get constructive interference if round-trip travel time is 27T.

. . 2L
Round-trip travel time = — = 2T
v

2 21 2mv
w=—-—= = — = 2w,

T Liv L



Physical Example: Vibrating String

In fact, we also get constructive interference if round-trip travel time is kT'.

2L
Round-trip travel time = — = kT
v

2r  2m —@—k‘w
T 2L/kv L

Only certain frequencies (harmonics of w, = mv/L) persist.
This is the basis of stringed instruments.



Physical Example: Vibrating String

More complicated motions can be expressed as a sum of normal modes
using Fourier series. Here the string is “plucked” at x = 1.




Physical Example: Vibrating String
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Differences in harmonic structure generate differences in timbre.



Summary

e We examined the convergence of Fourier series.
— Functions with discontinuous slopes well represented.
— Functions with discontinuous values generate ripples
— Gibb’s phenomenon.
e We investigated several properties of Fourier series.
— scaling time
— shifting time
—  We will find that there are many others
e We saw how Fourier series are useful for modeling a vibrating string.



Question of the Day

Let f(t) represent the following periodic square wave:

ft) = f(t+2)

—2 —1 0 1 2
How many of the following orthogonality conditions are true?

e (fO-1) L(f(20)-1)7
e (f(O-2) L(f(20)-2)7
e (fO-1) L(f(20)-2)7




Question of the Day

Please enter your response a the following url:

http://bit.ly/4gehFmF



Trig Table

sin(a) cos(b) + cos(a) sin(b)
sin(a) cos(b) - cos(a) sin(b)
cos(a) cos(b) - sin(a) sin(b)
cos(a) cos(b) + sin(a) sin(b)
(tan(a)+tan(b))/(1-tan(a) tan(b))
(tan(a)-tan(b))/(1+tan(a) tan(b))

sin(a+b)
sin(a-b)
cos (a+b)
cos(a-b)
tan(a+b)
tan(a-b)

sin(A) + sin(B)
sin(A) - sin(B)
cos(A) + cos(B)
cos(A) - cos(B)

2 sin((A+B)/2) cos((A-B)/2)
2 cos((A+B)/2) sin((A-B)/2)
2 cos((A+B)/2) cos((A-B)/2)
-2 sin((A+B)/2) sin((A-B)/2)

2 sin(a) cos(b)
2 cos(a) sin(b)
2 cos(a) cos(b)
-2 sin(a) sin(b)

sin(a-b)
sin(a-b)
cos(a-b)
cos(a-b)

sin(a+b)
sin(a+b)
cos (a+b)
cos(a+b)

I+ 1+

cos(A) cos(B)
sin(A) sin(B)
sin(A) cos(B)
cos(A) sin(B)

cos (A-B)
cos (A-B)
sin(A+B)
sin(A+B)

cos (A+B)
cos (A+B)
sin(A-B)
sin(A-B)
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