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6.3000: Signal Processing

Signals are functions that contain and convey information.

Examples:

e the MP3 representation of a sound

e the JPEG representation of a picture
e an MRI image of a brain

Signal Processing develops the use of signals as abstractions:

e identifying signals in physical, mathematical, computation contexts,
e analyzing signals to understand the information they contain, and

¢ manipulating signals to modify the information they contain.



6.3000: Signal Processing

Signal Processing is widely used in science and engineering to ...

e model some aspect(s) of the world,

e analyze the model, and

e interpret results to gain a new or better understanding.
analyze

model - » result
(math, computation)

make model interpret results

world new understanding

Signal Processing provides a common framework for solving problems in
different disciplines.



Check Yourself

Relation between a signal and the information contained in that signal.

f(t)

Listen to the following four manipulated signals:

f1(®), f2(t), f3(t), fa(t).

How many of the following relations are true?

o f1(t) = f(20)
o fat) =—f(?)
o Jfa(t) = f(2)
o fult)=3f(t)

*

speech signal synthesized by Robert Donovan
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Check Yourself

Relation between a signal and the information contained in that signal.

f(t)

Listen to the following four manipulated signals:

fi(®), f2(t), f3(t), fa(t).

How many of the following relations are true? 2

o filt)=f(2t) V
o folt)=—f(t) X
o f3(t)=f(2t) X
o filty=1f1t) V

*

speech signal synthesized by Robert Donovan




Musical Sounds as Signals

Signals are functions that contain and convey information.
Example: a musical sound can be represented as a function of time.

pressure

t [seconds]

Although this time function is a complete description of the sound, it does
not expose many of the important properties of the sound.



Musical Sounds as Signals

The following sounds have the same pitch, but they sound different.

piano cello bassoon
_ t A t t
oboe horn altosax
_ t t 3
violin
t —
755 Sec.

It's not clear how the audible differences relate to the time waveforms.
(audio clips from from http://theremin.music.uiowa.edu)



Musical Signals as Sums of Sinusoids

An alternative way to characterize signals produced by musical instruments
is by their harmonic structure (i.e., as sums of sinusoids).

[e.e]
ft) = (e cos kwot + dj, sin kw,t)
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Since these sounds are (nearly) periodic, the frequencies of the dominant
sinusoids are (nearly) integer multiples of a fundamental frequency w,.



Harmonic Structure

By separating contributions of each harmonic, this representation describes

the distribution of energy across frequencies.
o

ft) = (ck cos kwot + di sin kw,t) = Z my, cos (kwot + @)
k=0 k=0

d
where m2 = ¢z + d2 and tan ¢y, = -

Ck
I.!]llw

Wo 2wp 3wo 4wo dwo 6wo

m

< harmonic #

DC —-©

fundamental —+
second harmonic — o
third harmonic — w
fourth harmonic — b~
fifth harmonic — ot
sixth harmonic — &

This distribution highlights the harmonic structure of the signal.



Harmonic Structure

The harmonic structures of notes from different instruments are different.

piano piano
- t k
bassoon bassoon
] ¢ [ I Ek
violin violin
t k

Some musical qualities are more easily seen in time, others in frequency.



Consonance and Dissonance

Which of the following pairs is least consonant?

Al A2
t

B1 B2
t

C1 c2
t

Obvious from the sounds ... less obvious from the waveforms.



Express Each Signal as a Sum of Sinusoids

F&) = my,cos(kwot + )

k=0

= my cos(wot+d1) + ma cos(2wet+P2) + mg cos(3wet+d3) + - - -

freq
"‘::V:‘f: :“;:;'A;A ~
N o~ = -—
'L o ——
VayasaN N
V\ 7/ time

Two views: as a function of time and as a function of frequency



Express Each Signal as a Sum of Sinusoids

F&) = my,cos(kwot + )

k=0
= my cos(wot+d1) + ma cos(2wet+P2) + mg cos(3wet+d3) + - - -

{ — —t— ' freq

The signal f(t) can be expressed as a discrete set of frequency components.



Musical Sounds as Signals

Time functions do a poor job of conveying consonance and dissonance.
octave (D+D’) fifth (D4A) D+Eb
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Harmonic structure conveys consonance and dissonance better.



Check Yourself

Let f(t) represent the following sum of two sinusoids:
ft) = cos(277300t) + sin(27120t + 7/4)

K/\/\/\/\/M/
IVARAVARVARAVA

Find the largest fundamental frequency w, for which f(t) can be

expressed as the following Fourier series:
(o ¢]

fit) = (e cos(kwot) + dy sin(kw,t))

1. w, =120 2. wo = 300 3. w, =600 4. w, = 27600

5. none of the above




Check Yourself
Let f(t) represent the following sum of two sinusoids:
f(t) = cos(2m300t) + sin(2w120t + 7/4)

Find the largest fundamental frequency w, for which f(¢) can be expressed

as the following Fourier series:
o

F(t) =" (cx cos(kwot) + di sin(kuw,t))
k=0
To satisfy the Fourier relation, 27300 must be an integer multiple of the
unknown w,: i.e., w, could be 27300 when k=1, or 27150 when k=2, or
27100 when k=3, or 2775 when k=4, or 2760 when k=5, or 2750 when k=6,
etc.

Similarly, 2120 must be an integer multiple of the same unknown w,: i.e.,
w, could be 27120 when k=1, or 2760 when k=2, or 2740 when k=3, or
2730 when k=4, or 2724 when k=5, or 2720 when k=6, etc.

The largest common fundamental frequency is 2760, for which 27300 is the
fifth harmonic and 27120 is the second harmonic.



Check Yourself

Let f(t) represent the following sum of two sinusoids:
ft) = cos(277300t) + sin(27120t + 7/4)

K/\/\/\/\/M/
IVARAVARVARAVA

Find the largest fundamental frequency w, for which f(t) can be

expressed as the following Fourier series:
(o ¢]

fit) = (e cos(kwot) + dy sin(kw,t))

1. w, =120 2. wo = 300 3. w, =600 4. w, = 27600

5. none of the above (w, = 2760)




Finding Fourier Representations of Signals

Fourier series are sums of harmonically related sinusoids.
o

f(t) = Z (ck cos(kwot) + di sin(kwot))
k=0
where w, = 27T/T represents the fundamental frequency.

Basis functions:
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Q1: Under what conditions can we write f(t) as a Fourier series?
Q2: How do we find the coefficients ¢, and d;..



Finding Fourier Representations of Signals

Under what conditions can we write f(¢) as a Fourier series?
Fourier series can only represent periodic signals.

Definition: a signal f(t) is periodic in T' if
f(t) = f(t+T)

for all t.
Note: if a signal is periodic in T', then it is also periodic in 27T, 3T, ...

The smallest positive number T, for which f(t) = f(t+T,) for all t is some-
times called the fundamental period.

If a signal does not satisfy f(t) = f(t+1) for any value of T, then the signal
is aperiodic.



Calculating Fourier Coefficients

How do we find the coefficients ¢;? Start with cg.

Key idea: simplify by integrating over the period T of the fundamental.
Start with the general form:

f(t)=f(t+T) =co + Z (cx cos(kwot) + di, sin(kwot))
k=1

Integrate both sides over T

/OTf@dt:'/TcodH/OT(
T

_Tco+z<ck/ cos(kw,t )dt—l—dk/
0

All but the first term integrates to zero, leaving

T
co = ;/0 (1) dt

The ¢y term is equal to the average (“DC") value of f(t).

o0

(ck cos(kwot) + di sin(k:wot))> dt
k=1

sin(kwot) dt> =Tcy



Calculating Fourier Coefficients
Isolate the ¢; term by multiplying both sides by cos(lwot) before integrating.

f(t)=f(t+T) =co+ Z (cx cos(kwot) + di sin(kw,t))
k=1

T T
/ f(t) cos(lwot) dt = / co cos(lwyt) dit
0 0

T
+Z/O ¢k cos(kwot) cos(lw,t) dt
k=1

© T
+ Z /0 dj, sin(kwot) cos(lw,t) dt
k=1

A product of sinusoids can be expressed as sum and difference frequencies.

1 1
cos(kw,t) cos(lwyt) = 5 cos((k—l)wot) + 3 cos((k+1)wot)

1 1
sin(kw,t) cos(lwot) = 5 sin((k—l)wot) + 5 sin((k+1)wot)



Calculating Fourier Coefficients

Isolate the ¢; term by multiplying both sides by cos(lwot) before integrating.

f(t)=f(t+T) =co+ Z (cx cos(kwot) + di sin(kw,t))
k=1

T T
/ f () cos(lw,t) dt = / co cos(lw,t) dt
0 0

> T
" ;/0 - (i cos((k—l)wot) + % COS((kH)wot)) dt

0o T
+ ;/0 di, (; sin((k—l)wot) + ;sin((k—kl)wot)) dt

A product of sinusoids can be expressed as sum and difference frequencies.

1 1
cos(kw,t) cos(lwet) = 5 cos((k—l)wot) + 3 cos((k+1)wot)

1 1
sin(kw,t) cos(lwot) = 5 sin((k—l)wot) + 5 sin((k+1)wot)



Calculating Fourier Coefficients

Isolate the ¢; term by multiplying both sides by cos(lwot) before integrating.

f(t)=f(t+T) =co+ Z (cx cos(kwot) + di sin(kw,t))
k=1

T . .
/0 f(t) cos(lwot) dt = /0 CW@ i
+ ;/0 Ck (5 cos((k—l)wot) + 3 cos((k+l)wot)> dt

+ ;/0 dy, (% sin((k—l)wot) + %Sin((k—i-l)wot)) dt

The ¢y term is zero because the integral of cos(lw,t) over T is zero.



Calculating Fourier Coefficients

Isolate the ¢; term by multiplying both sides by cos(lwot) before integrating.

f(t)=f(t+T) =co+ Z (cx cos(kwot) + di sin(kw,t))
k=1

T

/ f(t) cos(lwot) d :/ cw&@/:t dt
00 1 20 . 0
+Z/ cr (— cgg((ﬁ')wotwr —c +l)w0t)> dt
—Jo 2 2

+ ;/0 dy, (% sin((k—l)wot) + %Sin((k—i-l)wot)) dt

If k =1, then cos((k—l)w,t) = 1 and the integral is Z¢;.
All of the other cos((k — l)wot) terms in the sum integrate to zero.
All of the cos((k + l)w,t) terms in the integrate to zero.



Calculating Fourier Coefficients

Isolate the ¢; term by multiplying both sides by cos(lwot) before integrating.

f(t)=f(t+T) =co+ Z (cx cos(kwot) + di sin(kw,t))
k=1

T T 0
/0 f(t) cos(lwot) dt = /0 cw&@ﬁ:t) dt
+ i /T ch (% cgg(’(ﬁv)wot) + %c +l)w0t)> dt

k=10
00 T 0 0
1 1
+ ,}1/0 dy; (5 si/n,(%kﬁ?wﬁ) +3 sin)) dt

If k=1, then sin((k—0)w,t = 0 and the integral is 0.
All of the other d; terms are harmonic sinusoids that integrate to 0.

The only non-zero term on the right side is %Cl-
We can solve to get an expression for ¢; as

= ;/OT f(t) cos(lwot) dt



Calculating Fourier Coefficients

Analogous reasoning allows us to calculate the d;, coefficients, but this time
multiplying by sin(lw,t) before integrating.

f(t)=f(+T) =co+ Z (ck cos(kwot) + di sin(kw,t))
k=1

T T
/ f(t) sin(lwot) dt = / co sin(lwyt) dt
0 0

o T

+ Z / ¢k cos(kwot) sin(lw,t) dt
k=1"0
o T

+)° / dje sin(kwot) sin(lw,t) dt
k=1"0

A single term remains after integrating, allowing us to solve for d; as

T
d; = ;/0 f () sin(lw,t) dt



Calculating Fourier Coefficients

Summarizing ...
If f(t) is expressed as a Fourier series

ft)=f+T) =co+ Z (ck cos(kwot) + di sin(kwot))
k=1

the Fourier coefficients are given by
! / (1) dt

Ccop = =

0= -
2

Ck = = /f(t) cos(kwot)dt; k=1,2,3,...
T )r

2
=2 /f(t) sin(kwot) dt; k=1,2,3,...
T )7



Example of Analysis

Find the Fourier series coefficients for the following triangle wave:

ft) = ft+2)

—1
| T T —1
—2 -1 0 1 2
T=2
_ 2 _
Wo="m =7
1 (7 1 [?
== t)dt = - t)dt = -
0 T/f() 2/0 (1
T/2 2 k 1 4
/ z :2/ tcos(ﬂkt)dt:{ 2z kodd
T/2 0 0 k=2,4,6,...

dp, =0 (by symmetry)



Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Let fs(t) represent the function synthesized from the Fourier coefficients.

- _ I — 4
fs(t) =co — Z (cx cos(kwot) + di sin(kwot)) = 3 Z 2 cos(kmt)
k=1 k=1
k odd
1 0
fs(t) = 5 — Z 271{12 COS(k’ﬂ't)
=1
k odd

[s(t)




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Let fs(t) represent the function synthesized from the Fourier coefficients.

- _ I — 4
fs(t) =co — Z (cx cos(kwot) + di sin(kwot)) = 3 Z 2 cos(kmt)
k=1 k=1
k odd
1 1
fs(t) = 5 — Z 271{12 COS(k’ﬂ't)
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k odd




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Let fs(t) represent the function synthesized from the Fourier coefficients.

- _ I — 4
fs(t) =co — Z (cx cos(kwot) + di sin(kwot)) = 3 Z 2 cos(kmt)
k=1 k=1
k odd
1 3
fs(t) = 5 — Z 271{12 COS(k’ﬂ't)
=1
k odd




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Let fs(t) represent the function synthesized from the Fourier coefficients.

- _ I — 4
fs(t) =co — Z (cx cos(kwot) + di sin(kwot)) = 3 Z 2 cos(kmt)
k=1 k=1
k odd
1 5
fs(t) = 5 — Z 271{12 COS(k’ﬂ't)
=1
k odd




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Let fs(t) represent the function synthesized from the Fourier coefficients.

- _ I — 4
fs(t) =co — Z (cx cos(kwot) + di sin(kwot)) = 3 Z 2 cos(kmt)
k=1 k=1
k odd
1 7
fs(t) = 5 — Z 271{12 COS(k’ﬂ't)
=1
k odd




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Let fs(t) represent the function synthesized from the Fourier coefficients.

- _ I — 4
fs(t) =co — Z (cx cos(kwot) + di sin(kwot)) = 3 Z 2 cos(kmt)
k=1 k=1
k odd
1 9
fs(t) = 5 — Z 271{12 COS(k’ﬂ't)
=1
k odd




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Let fs(t) represent the function synthesized from the Fourier coefficients.

- _ I — 4
fs(t) =co — Z (cx cos(kwot) + di sin(kwot)) = 3 Z 2 cos(kmt)

k=1 k=1

k odd
19
1 4

fs(t) = 5 — Z W COS(k’ﬂ't)

k=1

k odd




Example of Synthesis

Generate f(t) from the Fourier coefficients in the previous slide.

Let fs(t) represent the function synthesized from the Fourier coefficients.

o0 [e.9]

. 1 4
fs(t) =co — Z (cx cos(kwot) + di sin(kwot)) = 5 Z o2 cos(kmt)
k=1 k=1
k odd
99
1 4
fo(t) =5 - > 53 cos(knt)
k=1
k odd
()
-2 -1 0 1 2

The synthesized function fs(t) — f(t) as the number of terms increases.



Two Views of the Same Signal

Harmonic expansion provides an alternative view of the signal.
o0 o0

ft) = (cx cos(kwot) + d, sin(kwot)) = Z my, cos(kwyt+dy)
k=0 k=0

We can view the musical signal
e as a function of time f(¢), or
e as a sum of harmonics.

Both views are useful. For example,
e the peak sound pressure is more easily seen in f(t), while
e consonance is more easily analyzed by comparing harmonics.

This type of harmonic analysis is an example of Fourier Analysis,
which is a major theme of this subject.



Question of the Day

Why do some pairs of musical notes sound consonant and others

sound dissonant.

octave (D+D")

fifth (D+A) D+Eb

0123456789

D)
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3456789101112

|
012
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t
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0123456789

A

0123456789

0123456789

D

0123456789

D)

harmonics




Reconvene in 10 minutes for Recitation

If the third character of your kerberos username is in 'abcdefghijk’:
stay in this room 34-101 for recitation.
else:

go to room 32-141 for recitation.



Trig Table

sin(a) cos(b) + cos(a) sin(b)
sin(a) cos(b) - cos(a) sin(b)
cos(a) cos(b) - sin(a) sin(b)
cos(a) cos(b) + sin(a) sin(b)
(tan(a)+tan(b))/(1-tan(a) tan(b))
(tan(a)-tan(b))/(1+tan(a) tan(b))

sin(a+b)
sin(a-b)
cos (a+b)
cos(a-b)
tan(a+b)
tan(a-b)

sin(A) + sin(B)
sin(A) - sin(B)
cos(A) + cos(B)
cos(A) - cos(B)

2 sin((A+B)/2) cos((A-B)/2)
2 cos((A+B)/2) sin((A-B)/2)
2 cos((A+B)/2) cos((A-B)/2)
-2 sin((A+B)/2) sin((A-B)/2)

2 sin(a) cos(b)
2 cos(a) sin(b)
2 cos(a) cos(b)
-2 sin(a) sin(b)

sin(a-b)
sin(a-b)
cos(a-b)
cos(a-b)

sin(a+b)
sin(a+b)
cos (a+b)
cos(a+b)

I+ 1+

cos(A) cos(B)
sin(A) sin(B)
sin(A) cos(B)
cos(A) sin(B)

cos (A-B)
cos (A-B)
sin(A+B)
sin(A+B)

cos (A+B)
cos (A+B)
sin(A-B)
sin(A-B)

NNDNDN
I+ 1+



