
6.3000: Signal Processing

Sampling and Aliasing

• discrete time

• discrete amplitudes

February 12, 2026



Importance of Discrete Representations

Our goal is to develop signal processing tools to model interesting aspects

of the world, to analyze the model, and to interpret the results.

Model Result

World New Understanding

make model

analyze

(math, computation)

interpret results

The increasing power and decreasing cost of computation makes the

use of computation increasingly attractive.

However, many important signals are naturally described with continuous

functions, that must be sampled in order to be analyzed computationally.



6.3000: Signal Processing

Signals are functions that contain and convey information.

Examples:

• the MP3 representation of a sound

• the JPEG representation of a picture

• an MRI image of a brain

Signal Processing develops the use of signals as abstractions:

• identifying signals in physical, mathematical, computation contexts,

• analyzing signals to understand the information they contain, and

• manipulating signals to modify the information they contain.



Importance of Discrete Representations

Our goal is to develop signal processing tools to model interesting aspects

of the world, to analyze the model, and to interpret the results.

Model Result

World New Understanding

make model

analyze

(math, computation)

interpret results

The increasing power and decreasing cost of computation makes the

use of computation increasingly attractive.

However, many important signals are naturally described with continuous

functions, that must be sampled in order to be analyzed computationally.

Today: understand relations between continuous and sampled signals.



Sampling

Sampling refers to the process by which a continuous-time signal f(t) is

converted to a discrete-time signal f [n].

We use parentheses to denote functions of continuous domain (e.g., f(t))

and square brackets to denote functions of discrete domain (e.g., f [n]).

t

f(t)

0∆ 2∆ 4∆ 6∆ 8∆ 10∆
n

f [n] = f(n∆)

0 2 4 6 8 10

∆ = sampling interval

fs = 1
∆ = sampling frequency

How does sampling affect the information contained in a signal?



Effects of Sampling are Easily Heard

Sampling Music

fs = 1
∆

• fs = 44.1 kHz

• fs = 22 kHz

• fs = 11 kHz

• fs = 5.5 kHz

• fs = 2.8 kHz

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Effects of Sampling are Easily Seen

Sampling Images

original: 2048× 1536



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 1024× 768



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 512× 384



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 256× 192



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 128× 96



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 64× 48



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 32× 24



Characterizing Sampling

We would like to sample in a way that preserves information.

However, information is often lost in the sampling process.

Example: samples (red) provide no information about intervening values.

t



Characterizing Sampling

We would like to sample in a way that preserves information.

However, information is generally lost in the sampling process.

Example: samples (red) provide no information about intervening values.

t

Furthermore, information that is retained by sampling can be misleading.

Example: samples can suggest patterns not contained in the original.

t

Samples (blue) of the original high-frequency signal (green)

could just as easily have come from a much lower frequency signal (red).



Characterizing Sampling

We would like to sample in a way that preserves information.

However, information is generally lost in the sampling process.

Example: samples (red) provide no information about intervening values.

t

Furthermore, information that is retained by sampling can be misleading.

Example: samples can suggest patterns not contained in the original.

t

Samples (blue) suggest an input that is much lower in frequency (red) than

the original signal (green).



Characterizing Sampling

Our goal is to understand sampling so that we can mitigate its effects on

the information contained in the signals we process.



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.1

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.1n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.2

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.2n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.3

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.3n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.4

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.4n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.5

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.5n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.6

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.6n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.7

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.7n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.8

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.8n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.9

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.9n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 1.0

n, t/∆

x[n] = cos(2π∆n) = cos(2π 1.0n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.1

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.1n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.2

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.2n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.3

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.3n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.4

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.4n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.5

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.5n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.6

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.6n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.6

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.6n) = cos(2π 0.4n)

n, t/∆

cos(2π 0.6n) = cos(−2π 0.6n) = cos(−2π 0.6n+2πn)
= cos(2π(1−0.6)n) = cos(2π 0.4n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.7

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.7n) = cos(2π 0.3n)

n, t/∆

cos(2π 0.7n) = cos(−2π 0.7n) = cos(−2π 0.7n+2πn)
= cos(2π(1−0.7)n) = cos(2π 0.3n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.8

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.8n) = cos(2π 0.2n)

n, t/∆

cos(2π 0.8n) = cos(−2π 0.8n) = cos(−2π 0.8n+2πn)
= cos(2π(1−0.8)n) = cos(2π 0.2n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 0.9

n, t/∆

x[n] = cos(2π∆n) = cos(2π 0.9n) = cos(2π 0.1n)

n, t/∆

cos(2π 0.9n) = cos(−2π 0.9n) = cos(−2π 0.9n+2πn)
= cos(2π(1−0.9)n) = cos(2π 0.1n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency ω = 2π.

Sample x(t) = cos(2πt) every ∆ seconds to obtain x[n] = cos(2π∆n).

x(t) = cos(2πt)
∆ = 1.0

n, t/∆

x[n] = cos(2π∆n) = cos(2π 1.0n) = cos(2π 0.0n)

n, t/∆



Characterizing Sampling

The same sequence of samples results when x(t)= cos(2πt) is sampled at

intervals ∆1 or ∆2 if ∆2=1−∆1.

∆1

∆2

0 1 2
0

1

2

x[n] = cos(2π∆2n) = cos
(

2π(1−∆1)n
)

= cos(2πn− 2π∆1n) = cos(2π∆1n)

Points on this line represent pairs of sampling intervals (∆1 and ∆2) that

generate the same sequence of samples.



Characterizing Sampling

Similarly, the same sequence of samples results when x(t)= cos(2πt) is sam-

pled at intervals ∆1 or ∆2 if ∆2=2−∆1.

∆1

∆2

0 1 2
0

1

2

x[n] = cos(2π∆2n) = cos
(

2π(2−∆1)n
)

= cos(4πn− 2π∆1n) = cos(2π∆1n)



Characterizing Sampling

Any integer shift also works. when x(t)= cos(2πt) is sampled at ∆1 intervals

or at ∆2 intervals if ∆2 = 2−∆1.

∆1

∆2

0 1 2
0

1

2

1−∆
1

2−∆
1

3−∆
1

x[n]= cos(2π∆2n)= cos
(

2π(N−∆1)n
)

= cos(2Nπn− 2π∆1n)= cos(2π∆1n)



Characterizing Sampling

Sampling x(t)= cos(2πt) at t=∆1n or t = ∆2n also generates the same

sequence of samples when ∆2 = N+∆1.

∆1

∆2

0 1 2
0

1

2

1−∆
1

2−∆
1

3−∆
1

∆1∆1+
1

∆1−
1

x[n]= cos(2π∆2n)= cos
(

2π(N+∆1)n
)

= cos(2Nπn+ 2π∆1n)= cos(2π∆1n)



Characterizing Sampling

Sampling x(t)= cos(2πt) at t=∆1n or t = ∆2n also generates the same

sequence of samples when ∆2 = N+∆1.

∆1

∆2

0 1 2
0

1

2

1−∆
1

2−∆
1

3−∆
1

∆1∆1+
1

∆1−
1

x[n]= cos(2π∆2n)= cos
(

2π(N+∆1)n
)

= cos(2Nπn+ 2π∆1n)= cos(2π∆1n)

Many different sampling intervals result in the same sequence of samples.



Characterizing Sampling

Sampling cos(ω1t) and cos(ω2t) with the same sampling interval ∆ can also

generate the same sequence of samples. For example, the same sequence

of samples results if ω2∆ = ω1∆± 2πk for any integer value of k.

x[n] = cos(ω2∆n) = cos((ω1∆± 2πk)n) = cos((ω1∆)n)

ω1∆

ω2∆

0 π 2π 3π 4π
0

π

2π

3π

4π
ω i∆ω i∆

+2π

ω i∆
−2π

Each point on the lines above show a pair of frequencies (ω1 and ω2) that

generate the same sequence of samples: x[n] = cos(ω1∆n) = cos(ω2∆n).



Characterizing Sampling

Sampling cos(ω1t) and cos(ω2t) with the same sampling interval ∆ can also

generate the same sequence of samples. As a second example, the same

sequence of samples results if ω2∆ = 2πk−ω1∆ for any integer value of k.

x[n] = cos(ω2∆n) = cos((2πk − ω1∆)n) = cos((−ω1∆)n) = cos(ω1∆n)

ω1∆

ω2∆

0 π 2π 3π 4π
0

π

2π

3π

4π
ω i∆ω i∆

+2π

ω i∆
−2π

2π−
ω

i ∆

4π−
ω

i ∆

6π−
ω

i ∆

Each point on the lines above show a pair of frequencies (ω1 and ω2) that

generate the same sequence of samples: x[n] = cos(ω1∆n) = cos(ω2∆n).



Aliasing

Many input frequencies ω1 generate the same output sequence of samples.

For example, the same samples would result if the input frequency ω1 times

∆ were 0.4π or 1.6π or 2.4π or ... Therefore, it’s impossible to determine

what frequency produced an output at frequency 0.4π.

ω1∆

ω2∆

0 π 2π 3π 4π
0

π

2π

3π

4π
ω i∆ω i∆

+2π

ω i∆
−2π

2π−
ω

i ∆

4π−
ω

i ∆

6π−
ω

i ∆

Since multiple frequencies ω1 generate the same discrete samples, we say

that these frequencies are aliases of each other.



Anti-Aliasing

We can prevent aliasing by removing input frequencies ω1∆ > π and disre-

garding output frequencies ω2∆ > π.

We call this low-frequency range of frequencies the baseband.

ω1∆

ω2∆

0 π 2π 3π 4π
0

π

2π

3π

4π

Since multiple frequencies ω1 generate the same discrete samples, we say

that these freqeuncies are aliases of each other.



Anti-Aliasing

The maximum frequency that can be represented using this scheme is called

the Nyquist frequency: ωm=π/∆, which equals half the sampling rate fs.

fm = ωm

2π = π/∆
2π = 1

2∆ = fs

2

ω1∆

ω2∆

0 π 2π 3π 4π
0

π

2π

3π

4π

Since multiple frequencies ω1 generate the same discrete samples, we say

that these freqeuncies are aliases of each other.



Check Yourself

Consider 3 CT signals:

f1(t) = cos(4000t) ; f2(t) = cos(5000t) ; f3(t) = cos(6000t)

Each of these is sampled so that

f1[n] = f1(n∆) ; f2[n] = f2(n∆) ; f3[n] = f3(n∆)

where ∆ = 0.001.

Which list goes from lowest to highest (baseband) frequency?

0. f1[n] f2[n] f3[n] 1. f1[n] f3[n] f2[n]

2. f2[n] f1[n] f3[n] 3. f2[n] f3[n] f1[n]

4. f3[n] f1[n] f2[n] 5. f3[n] f2[n] f1[n]



Check Yourself

Consider 3 CT signals:

f1(t) = cos(4000t) ; f2(t) = cos(5000t) ; f3(t) = cos(6000t)

Each of these is sampled so that

f1[n] = f1(n∆) ; f2[n] = f2(n∆) ; f3[n] = f3(n∆)

where ∆ = 0.001.

Sample: cos (ωt)|t=n∆ = cos(ω∆n) : ω1∆ = 4 ; ω2∆ = 5 ; ω3∆ = 6

ω1∆

ω2∆

0 π 2π 3π 4π
0

π

2π

3π

4π
ω i∆ω i∆

+2π

ω i∆
−2π

2π−
ω

i ∆

4π−
ω

i ∆

6π−
ω

i ∆



Check Yourself

Graphically: As the input frequency ω1∆ goes from 4 to 5 to 6, the output

baseband frequency decreases from approximately 2.3 to 1.3 to 0.3.

ω1∆

ω2∆

0 π 2π 3π 4π
0

π

2π

3π

4π



Check Yourself

As frequency increases, the shapes of the sampled signals deviate from

those of the underlying CT signals.

n

Ω = 1 : x[n] = cos(n)

n

Ω = 2 : x[n] = cos(2n)

n

Ω = 3 : x[n] = cos(3n)



Check Yourself

Worse and worse representation.ΩL

n

Ω = 4 : x[n] = cos(4n) = cos
(

(2π − 4)n
)
≈ cos(2.283n)

n

Ω = 5 : x[n] = cos(5n) = cos
(

(2π − 5)n
)
≈ cos(1.283n)

n

Ω = 6 : x[n] = cos(6n) = cos
(

(2π − 6)n
)
≈ cos(0.283n)

The same DT sequence represents many different values of Ω.



Check Yourself

For Ω > π, a lower frequency ΩL has the same sample values as Ω.

n

Ω = 4 : x[n] = cos(4n) = cos
(

(2π − 4)n
)
≈ cos(2.283n)

n

n

Ω = 5 : x[n] = cos(5n) = cos
(

(2π − 5)n
)
≈ cos(1.283n)

n

n

Ω = 6 : x[n] = cos(6n) = cos
(

(2π − 6)n
)
≈ cos(0.283n)

n

The same DT sequence represents multiple different values of Ω.



Check Yourself

Consider 3 CT signals:

f1(t) = cos(4000t) ; f2(t) = cos(5000t) ; f3(t) = cos(6000t)

Each of these is sampled so that

f1[n] = f1(n∆) ; f2[n] = f2(n∆) ; f3[n] = f3(n∆)

where ∆ = 0.001.

Which list goes from lowest to highest DT frequency? 5

0. f1[n] f2[n] f3[n] 1. f1[n] f3[n] f2[n]

2. f2[n] f1[n] f3[n] 3. f2[n] f3[n] f1[n]

4. f3[n] f1[n] f2[n] 5. f3[n] f2[n] f1[n]



Anti-Aliasing Demonstration

Sampling Music.

• fs = 11 kHz without anti-aliasing

• fs = 11 kHz with anti-aliasing

• fs = 5.5 kHz without anti-aliasing

• fs = 5.5 kHz with anti-aliasing

• fs = 2.8 kHz without anti-aliasing

• fs = 2.8 kHz with anti-aliasing

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin

Why does the aliased version (i.e., without anti-aliasing) sound so bad?

Why is the anti-aliased version so much better?



Importance of Discrete Representations

Our goal is to develop signal processing tools to model interesting aspects

of the world, to analyze the model, and to interpret the results.

Model Result

World New Understanding

make model

analyze

(math, computation)

interpret results

The increasing power and decreasing cost of computation makes the

use of computation increasingly attractive.

However, many important signals are naturally described with continuous

functions, that must be sampled in order to be analyzed computationally.

Today: understand relations between continuous and sampled signals.



Quantization

The information content of a signal depends not only with sample rate but

also with the number of bits used to represent each sample.

−1

0

1

t

vi(t)

2 bits

0
0 vi

vo

−1

0

1

t

vi(t)

3 bits

0
0 vi

vo

−1

0

1

t

vi(t)

4 bits

0
0 vi

vo

Bit rate = (# bits/sample)×(# samples/sec)



Check Yourself

We hear sounds that range in amplitude from 1,000,000 to 1.

How many bits are needed to represent this range?

1. 5 bits

2. 10 bits

3. 20 bits

4. 30 bits

5. 40 bits



Check Yourself

How many bits are needed to represent 1,000,000:1?

bits range

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1, 024
11 2, 048
12 4, 096
13 8, 192
14 16, 384
15 32, 768
16 65, 536
17 131, 072
18 262, 144
19 524, 288
20 1, 048, 576



Check Yourself

We hear sounds that range in amplitude from 1,000,000 to 1.

How many bits are needed to represent this range? 3

1. 5 bits

2. 10 bits

3. 20 bits

4. 30 bits

5. 40 bits



Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 6 bits/sample

• 5 bits/sample

• 4 bits/sample

• 3 bits/sample

• 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 6 bits/sample

• 5 bits/sample

• 4 bits/sample

• 3 bits/sample

• 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 6 bits/sample

• 5 bits/sample

• 4 bits/sample

• 3 bits/sample

• 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 6 bits/sample

• 5 bits/sample

• 4 bits/sample

• 3 bits/sample

• 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 6 bits/sample

• 5 bits/sample

• 4 bits/sample

• 3 bits/sample

• 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 6 bits/sample

• 5 bits/sample

• 4 bits/sample

• 3 bits/sample

• 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
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Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 6 bits/sample

• 5 bits/sample

• 4 bits/sample
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Quantizing Images

Converting an image from a continuous representation to a discrete repre-

sentation involves the same sort of issues.

This image has 280× 280 pixels, with brightness quantized to 8 bits.
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Quantizing Images

8 bit image 1 bit image



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

• 4 bits/sample

• 4 bits/sample with dither

• 3 bits/sample

• 3 bits/sample with dither

• 2 bits/sample

• 2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

• 4 bits/sample

• 4 bits/sample with dither

• 3 bits/sample

• 3 bits/sample with dither

• 2 bits/sample

• 2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

• 4 bits/sample

• 4 bits/sample with dither

• 3 bits/sample

• 3 bits/sample with dither

• 2 bits/sample

• 2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

• 4 bits/sample

• 4 bits/sample with dither

• 3 bits/sample

• 3 bits/sample with dither

• 2 bits/sample

• 2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

• 4 bits/sample

• 4 bits/sample with dither

• 3 bits/sample

• 3 bits/sample with dither

• 2 bits/sample

• 2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

• 4 bits/sample

• 4 bits/sample with dither

• 3 bits/sample

• 3 bits/sample with dither

• 2 bits/sample

• 2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

• 4 bits/sample

• 4 bits/sample with dither

• 3 bits/sample

• 3 bits/sample with dither

• 2 bits/sample

• 2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

• 4 bits/sample

• 4 bits/sample with dither

• 3 bits/sample

• 3 bits/sample with dither

• 2 bits/sample

• 2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin

In what way is the dithered version better?



Summary

We are highly motivated to develop discrete representations of signals –

especially when they represent signals that are naturally described with

continuous functions.

Information is generally lost in such discretization processes.

Today we discussed two mechanisms that can alter the information con-

tained in a signal: aliasing and quantization.

Next time, we will develop representations that are specialized for discrete-

time signals.



Question of the Day

Describe what it means for a signal to “alias”.

Please enter your response a the following url:

http://bit.ly/4qehFmF



Trig Table

sin(a+b) = sin(a) cos(b) + cos(a) sin(b)
sin(a-b) = sin(a) cos(b) - cos(a) sin(b)
cos(a+b) = cos(a) cos(b) - sin(a) sin(b)
cos(a-b) = cos(a) cos(b) + sin(a) sin(b)
tan(a+b) = (tan(a)+tan(b))/(1-tan(a) tan(b))
tan(a-b) = (tan(a)-tan(b))/(1+tan(a) tan(b))

sin(A) + sin(B) = 2 sin((A+B)/2) cos((A-B)/2)
sin(A) - sin(B) = 2 cos((A+B)/2) sin((A-B)/2)
cos(A) + cos(B) = 2 cos((A+B)/2) cos((A-B)/2)
cos(A) - cos(B) = -2 sin((A+B)/2) sin((A-B)/2)

sin(a+b) + sin(a-b) = 2 sin(a) cos(b)
sin(a+b) - sin(a-b) = 2 cos(a) sin(b)
cos(a+b) + cos(a-b) = 2 cos(a) cos(b)
cos(a+b) - cos(a-b) = -2 sin(a) sin(b)

2 cos(A) cos(B) = cos(A-B) + cos(A+B)
2 sin(A) sin(B) = cos(A-B) - cos(A+B)
2 sin(A) cos(B) = sin(A+B) + sin(A-B)
2 cos(A) sin(B) = sin(A+B) - sin(A-B)


