6.3000: Signal Processing

Sampling and Aliasing
e discrete time
e discrete amplitudes

February 12, 2026



Importance of Discrete Representations

Our goal is to develop signal processing tools to model interesting aspects
of the world, to analyze the model, and to interpret the results.

analyze

Model » Result
(math, computation)
make model X l interpret results
World New Understanding

The increasing power and decreasing cost of computation makes the
use of computation increasingly attractive.

However, many important signals are naturally described with continuous
functions, that must be sampled in order to be analyzed computationally.



6.3000: Signal Processing

Signals are functions that contain and convey information.

Examples:

e the MP3 representation of a sound

e the JPEG representation of a picture
e an MRI image of a brain

Signal Processing develops the use of signals as abstractions:

e identifying signals in physical, mathematical, computation contexts,
e analyzing signals to understand the information they contain, and

¢ manipulating signals to modify the information they contain.



Importance of Discrete Representations

Our goal is to develop signal processing tools to model interesting aspects
of the world, to analyze the model, and to interpret the results.

analyze

Model » Result
(math, computation)
make model X l interpret results
World New Understanding

The increasing power and decreasing cost of computation makes the
use of computation increasingly attractive.

However, many important signals are naturally described with continuous
functions, that must be sampled in order to be analyzed computationally.

Today: understand relations between continuous and sampled signals.



Sampling

Sampling refers to the process by which a continuous-time signal f(t) is
converted to a discrete-time signal f[n].

We use parentheses to denote functions of continuous domain (e.g., f(t))
and square brackets to denote functions of discrete domain (e.g., f[n]).

ft) fln] = f(nd)
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A = sampling interval
fs = % = sampling frequency

How does sampling affect the information contained in a signal?



Effects of Sampling are Easily Heard

Sampling Music

fs :%
o fo=44.1 kHz
o f. =22 kHz
o fs =11 kHz
o fi =5.5 kHz
o f, =28 kHz

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Effects of Sampling are Easily Seen
Sampling Images

original: 2048 x 1536




Effects of Sampling are Easily Seen
Sampling Images

downsampled: 1024 x 768




Effects of Sampling are Easily Seen
Sampling Images

downsampled: 512 x 384




Effects of Sampling are Easily Seen
Sampling Images

Hx
-

"%i—"-hrgﬁmhw

downsampled: 256 x 192



Effects of Sampling are Easily Seen
Sampling Images

downsampled: 128 x 96




Effects of Sampling are Easily Seen
Sampling Images

downsampled: 64 x 48




Effects of Sampling are Easily Seen
Sampling Images

downsampled: 32 x 24




Characterizing Sampling

We would like to sample in a way that preserves information.
However, information is often lost in the sampling process.

Example: samples (red) provide no information about intervening values.




Characterizing Sampling

We would like to sample in a way that preserves information.
However, information is generally lost in the sampling process.

Example: samples (red) provide no information about intervening values.

Furthermore, information that is retained by sampling can be misleading.

Example: samples can suggest patterns not contained in the original.

Samples (blue) of the original high-frequency signal (green)



Characterizing Sampling

We would like to sample in a way that preserves information.
However, information is generally lost in the sampling process.

Example: samples (red) provide no information about intervening values.

Furthermore, information that is retained by sampling can be misleading.

Example: samples can suggest patterns not contained in the original.

Samples (blue) suggest an input that is much lower in frequency (red) than
the original signal (green).



Characterizing Sampling

Our goal is to understand sampling so that we can mitigate its effects on
the information contained in the signals we process.



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.
Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2t)

A =0.1
x[n] = cos(2mrAn) = cos(27 0.1 n)
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Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).

x(t) = cos(2t)
A=0.2
x[n] = cos(2mrAn) = cos(27 0.2 n)
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Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).

x(t) = cos(2mt)
A=04
x[n] = cos(2mrAn) = cos(27 0.4 n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).

x(t) = cos(2mt)
A=0.5
x[n] = cos(2rAn) = cos(27 0.5n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2mt)

A =0.6
x[n] = cos(2mrAn) = cos(27 0.6 n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2mt)

A=0.7
x[n] = cos(2mrAn) = cos(27 0.7 n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2mt)

A=0.8
x[n] = cos(2mrAn) = cos(27 0.8 n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2nt)

A =09
x[n] = cos(2mrAn) = cos(27 0.9n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2nt)

A=1.0
x[n] = cos(2mrAn) = cos(27 1.0n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.
Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2t)

A =0.1
x[n] = cos(2mrAn) = cos(27 0.1 n)
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Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).

x(t) = cos(2t)
A=0.2
x[n] = cos(2mrAn) = cos(27 0.2 n)
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Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).

x(t) = cos(2mt)
A=04
x[n] = cos(2mrAn) = cos(27 0.4 n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).

x(t) = cos(2mt)
A=0.5
x[n] = cos(2rAn) = cos(27 0.5n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2mt)

A =0.6
x[n] = cos(2mrAn) = cos(27 0.6 n)




Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).

x(t) = cos(2mt)
A =0.6
x[n] = cos(2mrAn) = cos(2m 0.6 n) = cos(2w 0.4n)

cos(2m 0.6 n) = cos(—2m0.6n) = cos(—2m 0.6 n+27mn)
= cos(2m(1—-0.6)n) = cos(2w0.4n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).

x(t) = cos(2mt)
A=0.7
x[n] = cos(2mrAn) = cos(27 0.7n) = cos(2m 0.3 n)

cos(2m0.7n) = cos(—2m0.7n) = cos(—2m 0.7 n+27mn)
= cos(2m(1—-0.7)n) = cos(2w 0.3 n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).

x(t) = cos(2mt)
A=0.8
x[n] = cos(2mrAn) = cos(2m 0.8 n) = cos(2m0.2n)

cos(2m0.8n) = cos(—2m0.8n) = cos(—2m 0.8 n+27mn)
= cos(2m(1—-0.8)n) = cos(2w0.2n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2mt)

A =09
x[n] = cos(2mrAn) = cos(2m 0.9n) = cos(2m 0.1 n)

cos(2m0.9n) = cos(—2m0.9n) = cos(—2m 0.9 n+27mn)
= cos(2m(1—-0.9)n) = cos(2w 0.1 n)



Characterizing Sampling

First, consider sampling a cosine function with fixed frequency w = 2.

Sample z(t) = cos(2nt) every A seconds to obtain z[n] = cos(2rAn).
x(t) = cos(2mt)

A=1.0
x[n] = cos(2mrAn) = cos(2m 1.0n) = cos(2m 0.0n)




Characterizing Sampling

The same sequence of samples results when z(t)=cos(27t) is sampled at
intervals A1 or Ag if Ag=1-A1.

0 T T Al
0 1 2

x[n] = cos(2mrAgn) = cos (27r(1—A1)n) = cos(2mn — 27 A1n) = cos(2rA1n)

Points on this line represent pairs of sampling intervals (A; and As) that
generate the same sequence of samples.



Characterizing Sampling

Similarly, the same sequence of samples results when z(t)= cos(27t) is sam-
pled at intervals A or Ag if Ag=2—A;.

0 - A

0 1 2

x[n] = cos(2mrAgn) = cos (27r(2—A1)n) = cos(4mn — 27 A1n) = cos(2rA1n)



Characterizing Sampling

Any integer shift also works.

x[n]=cos(2mAgn)= cos (27r(N—A1)n> =cos(2Nmn — 2rA1n)=cos(2rA1n)



Characterizing Sampling

Sampling z(t)=cos(2nt) at t=Ain or t = Agn also generates the same
sequence of samples when Ay = N+A;.
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x[n]=cos(2mAgn)= cos (27T(N+A1)n> =cos(2Nmn + 2nrA1n)=cos(2rAin)



Characterizing Sampling

Sampling z(t)=cos(2nt) at t=Ain or t = Agn also generates the same
sequence of samples when Ay = N+A;.

O
Ag > >
2 i A Y //t? //
N q{
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0 1 T Al
0 1 2

x[n]=cos(2mAgn)= cos (27r(N+A1)n> =cos(2Nmn + 2nrA1n)=cos(2rAin)

Many different sampling intervals result in the same sequence of samples.



Characterizing Sampling

Sampling cos(wit) and cos(wst) with the same sampling interval A can also
generate the same sequence of samples. For example, the same sequence
of samples results if woA = w1 A £ 27k for any integer value of k.

x[n] = cos(waAn) = cos((w1A £ 27k)n) = cos((w1A)n)

A

(.UQA ’u)tP ’\);A.D

47[- i ’/ ’/
q)'\‘
3m A 4
/VBND

2m d

7'[' -

0 T f T T CL)lA

0 ™ 2 3 47

Each point on the lines above show a pair of frequencies (w; and w9) that
generate the same sequence of samples: z[n] = cos(wiAn) = cos(waAn).



Characterizing Sampling

Sampling cos(wit) and cos(wst) with the same sampling interval A can also
generate the same sequence of samples. As a second example, the same
sequence of samples results if waA = 27k — w1 A for any integer value of k.

x[n] = cos(waAn) = cos((2mk — w1 A)n) = cos((—w1A)n) = cos(wi An)
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Each point on the lines above show a pair of frequencies (w; and w9) that
generate the same sequence of samples: z[n] = cos(wiAn) = cos(waAn).



Aliasing
Many input frequencies w; generate the same output sequence of samples.

For example, the same samples would result if the input frequency w; times
A were 0.4 or 1.6 or 2.4w or ... Therefore, it's impossible to determine
what frequency produced an output at frequency 0.4w.

0 ™ 2 3 47

0 N N A

Since multiple frequencies w; generate the same discrete samples, we say
that these frequencies are aliases of each other.



Anti-Aliasing

We can prevent aliasing by removing input frequencies w;A > 7 and disre-
garding output frequencies woA > .

We call this low-frequency range of frequencies the baseband.
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Anti-Aliasing

The maximum frequency that can be represented using this scheme is called
the Nyquist frequency: w,,=n/A, which equals half the sampling rate fs.
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Check Yourself

[ Consider 3 CT signals:
fi(t) = cos(4000t) 5  fa(t) = cos(5000t) ;  f3(t) = cos(6000¢)
Each of these is sampled so that
filn] = filnd) 5 fo[n] = fo(nd) 5 f3[n] = f3(nA)
where A = 0.001.

[ Which list goes from lowest to highest (baseband) frequency? j

0. filn] fa[n] f3ln] 1. filn] fs3[n] fa[n]
2. fa[n] filn] f3ln] 3. faln] f3[n] filn]
4. f3[n] filn] fa[n] 5. f3[n] faln] filn]




Check Yourself

Consider 3 CT signals:

f1(t) = cos(4000t)  ;  fa(t) = cos(5000t)  ;  f3(t) = cos(6000t)
Each of these is sampled so that
filn] = fi(nA) : fa[n] = f2(nA) ; fsln] = f3(nA)

where A = 0.001.

Sample: cos (wt)|,_,n =cos(wAn):  wiA=4; wA=5; wsA=6
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Check Yourself

Graphically: As the input frequency w1/ goes from 4 to 5 to 6, the output
baseband frequency decreases from approximately 2.3 to 1.3 to 0.3.
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Check Yourself

As frequency increases, the shapes of the sampled signals deviate from
those of the underlying CT signals.

Q=1:z[n] =cos(n)

Mo /N AN ATy,

e AL N

Q =2:x[n] =cos(2n)




Check Yourself

Worse and worse representation.




Check Yourself

For Q > m, a lower frequency )7, has the same sample values as ().

Q =4:x[n] = cos(4n) = cos <(27r - 4)n> ~ c0s(2.283n)

The same DT sequence represents multiple different values of (.



Check Yourself

[ Consider 3 CT signals:
fi(t) = cos(4000t) 5  fa(t) = cos(5000t) ;  f3(t) = cos(6000¢)
Each of these is sampled so that
filn] = filnd) 5 fo[n] = fo(nd) 5 f3[n] = f3(nA)
where A = 0.001.

[ Which list goes from lowest to highest DT frequency? 5

0. filn] fa[n] f3[n] 1. filn] f3ln] faln]
2. fa[n] filn] f3[n] 3. faln] fs[n] Ailn]
4. fsln] filn] faln] 5. fs[n] faln] filn]




Anti-Aliasing Demonstration

Sampling Music.

e f, =11 kHz without anti-aliasing
e fi =11 kHz with anti-aliasing
e fs = 5.5 kHz without anti-aliasing
e fs =5.5 kHz with anti-aliasing
e f, = 2.8 kHz without anti-aliasing
e f. = 2.8 kHz with anti-aliasing

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin

Why does the aliased version (i.e., without anti-aliasing) sound so bad?
Why is the anti-aliased version so much better?



Importance of Discrete Representations

Our goal is to develop signal processing tools to model interesting aspects
of the world, to analyze the model, and to interpret the results.

analyze
Model - » Result
(math, computation)
make model X l interpret results
World New Understanding

The increasing power and decreasing cost of computation makes the
use of computation increasingly attractive.

However, many important signals are naturally described with continuous
functions, that must be sampled in order to be analyzed computationally.

Today: understand relations between continuous and sampled signals.



Quantization

The information content of a signal depends not only with sample rate but
also with the number of bits used to represent each sample.

2 bits 3 bits 4 bits
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Bit rate = (# bits/sample) x (# samples/sec)



Check Yourself

p
We hear sounds that range in amplitude from 1,000,000 to 1.

[ How many bits are needed to represent this range?

1. 5 bits
2. 10 bits
3. 20 bits
4. 30 bits
5. 40 bits




Check Yourself

How many bits are needed to represent 1,000,000:17

bits range
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1,024
11 2,048
12 4,096
13 8,192
14 16, 384
15 32,768
16 65,536
17 131,072
18 262,144
19 524, 288

20 1,048,576



Check Yourself

p
We hear sounds that range in amplitude from 1,000,000 to 1.

[ How many bits are needed to represent this range? 3

1. 5 bits
2. 10 bits
3. 20 bits
4. 30 bits
5. 40 bits




Quantization Demonstration

Quantizing Music

e 16 bits/sample
e 6 bits/sample
e 5 bits/sample
e 4 bits/sample
e 3 bits/sample
e 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

e 16 bits/sample
e 6 bits/sample
e 5 bits/sample
e 4 bits/sample
e 3 bits/sample
e 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

e 16 bits/sample
e 6 bits/sample
e 5 bits/sample
e 4 bits/sample
e 3 bits/sample
e 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
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Quantization Demonstration

Quantizing Music

e 16 bits/sample
e 6 bits/sample
e 5 bits/sample
e 4 bits/sample
e 3 bits/sample
e 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

e 16 bits/sample
6 bits/sample
5 bits/sample
4 bits/sample
3 bits/sample
2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

e 16 bits/sample
e 6 bits/sample
e 5 bits/sample
e 4 bits/sample
e 3 bits/sample
e 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

e 16 bits/sample
e 6 bits/sample
e 5 bits/sample
e 4 bits/sample
e 3 bits/sample
e 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music

e 16 bits/sample
e 6 bits/sample
e 5 bits/sample
e 4 bits/sample
e 3 bits/sample
e 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantizing Images

Converting an image from a continuous representation to a discrete repre-
sentation involves the same sort of issues.

This image has 280 x 280 pixels, with brightness quantized to 8 bits.




Quantizing Images

8 bit image 7 bit image




Quantizing Images

8 bit image 6 bit image




Quantizing Images

8 bit image 5 bit image




Quantizing Images

8 bit image 4 bit image




Quantizing Images

8 bit image 3 bit image



Quantizing Images

8 bit image 2 bit image



Quantizing Images

8 bit image 1 bit image



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

e 4 bits/sample
4 bits/sample with dither
3 bits/sample
3 bits/sample with dither
2 bits/sample
2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

e 4 bits/sample
4 bits/sample with dither
3 bits/sample
3 bits/sample with dither
2 bits/sample
2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

e 4 bits/sample
4 bits/sample with dither
3 bits/sample
3 bits/sample with dither
2 bits/sample
2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

e 4 bits/sample
4 bits/sample with dither
3 bits/sample
3 bits/sample with dither
2 bits/sample
2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

e 4 bits/sample
4 bits/sample with dither
3 bits/sample
3 bits/sample with dither
2 bits/sample
2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

e 4 bits/sample
4 bits/sample with dither
3 bits/sample
3 bits/sample with dither
2 bits/sample
2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

e 4 bits/sample
4 bits/sample with dither
3 bits/sample
3 bits/sample with dither
2 bits/sample
2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin



Quantization Demonstration

Quantizing Music With and Without (Robert’s) Dither

e 4 bits/sample
4 bits/sample with dither
3 bits/sample
3 bits/sample with dither
2 bits/sample
2 bit/sample with dither

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto
Nathan Milstein, violin

In what way is the dithered version better?



Summary

We are highly motivated to develop discrete representations of signals —
especially when they represent signals that are naturally described with
continuous functions.

Information is generally lost in such discretization processes.

Today we discussed two mechanisms that can alter the information con-
tained in a signal: aliasing and quantization.

Next time, we will develop representations that are specialized for discrete-
time signals.



Question of the Day

Describe what it means for a signal to *“alias”.

Please enter your response a the following url:

http://bit.ly/4gehFmF



Trig Table

sin(a) cos(b) + cos(a) sin(b)
sin(a) cos(b) - cos(a) sin(b)
cos(a) cos(b) - sin(a) sin(b)
cos(a) cos(b) + sin(a) sin(b)
(tan(a)+tan(b))/(1-tan(a) tan(b))
(tan(a)-tan(b))/(1+tan(a) tan(b))

sin(a+b)
sin(a-b)
cos (a+b)
cos(a-b)
tan(a+b)
tan(a-b)

sin(A) + sin(B)
sin(A) - sin(B)
cos(A) + cos(B)
cos(A) - cos(B)

2 sin((A+B)/2) cos((A-B)/2)
2 cos((A+B)/2) sin((A-B)/2)
2 cos((A+B)/2) cos((A-B)/2)
-2 sin((A+B)/2) sin((A-B)/2)

2 sin(a) cos(b)
2 cos(a) sin(b)
2 cos(a) cos(b)
-2 sin(a) sin(b)

sin(a-b)
sin(a-b)
cos(a-b)
cos(a-b)

sin(a+b)
sin(a+b)
cos (a+b)
cos(a+b)

I+ 1+

cos(A) cos(B)
sin(A) sin(B)
sin(A) cos(B)
cos(A) sin(B)

cos (A-B)
cos (A-B)
sin(A+B)
sin(A+B)

cos (A+B)
cos (A+B)
sin(A-B)
sin(A-B)
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I+ 1+



