
6.3000: Signal Processing

Short-Time Fourier Transform

• Spectrograms

• Window Functions

April 01, 2025

Music Clip

In lecture, we saw three representations for the same music clip.

The first was the magnitude of the DFT (shown below).

Music Clip

The second was the spectrogram.

The third was the musical score.

Music Clip

Compare features of these representations.

• What do these representations have in common?

How are they different?

• Which representation has the best frequency resolution? Why?

• Which representation has the best time resolution? Why?

• The left panel has peaks with different heights. How do the different

heights in the left panel correspond to features of the spectrogram?

Window Functions

A defining feature of the DFT is its finite length N , which plays a critical

role in determining both time and frequency resolution.

n

x[n]

window

DFT

n

xw[n] = x[n]w[n]

0 N−1

DTFT

Ω

Xw(Ω)

−π 0 π

k

1
NXw

(2πk
N

)

-N2
0 N

2

sample: Ω→ 2πk
N

scale: 1/N

The finite length constraint is equivalent to multiplication by a rectangular

window. What would happen if we used a different type of window?

Window Functions

Dozens of different window functions are in common use. We will look at

three of them:

• rectangular window

• triangular window

• Hann window

These and other window functions have a variety of different properties.

We would like to understand which properties are important in which ap-

plications.

Rectangular Window

Definition:

wr[n] =
{

1
2M−1 0 ≤ n < 2M − 1
0 otherwise

• Make a plot of wr[n] versus n.

• Determine the DT Fourier Transform Wr(Ω).

• Make a plot of Wr(Ω) versus Ω.

Rectangular Window

Definition:

wr[n] =
{

1
2M−1 0 ≤ n < 2M − 1
0 otherwise

One approach would be to close the following sum analytically:

Wr(Ω) =
∞∑

n=−∞
wr[n]e−jΩn

Alternatively, we could evaluate the above sum for Ω = 2πk
N using a DFT:

Wr

(
2πk
N

)
=

∞∑
n=−∞

wr[n]e−j
2πk
N

n

Since wr[n] = 0 outside the range 0 ≤ n ≤ 2M−2 we can reduce the infinite

sum to a finite sum, which can then be evaluated with a DFT.

Wr

(
2πk
N

)
=

2M−2∑
n=0

wr[n]e−j
2πk
N

n = N ×DFT{wr}

We can choose the analysis length N of the DFT based on our desired

frequency resolution.

Rectangular Window

Definition:

wr[n] =
{

1
2M−1 0 ≤ n < 2M − 1
0 otherwise

from matplotlib.pyplot import plot,stem,xticks,xlabel,title,legend,show
from lib6003.fft import fft
from math import pi,cos,sin

M = 15
N = 1024
w = [1/(2*M-1) for n in range(2*M-1)]
stem(w+(60-len(w))*[0])
xlabel(’Time (samples)’)
title(’Rectangular Window’)
show()
W = fft(w+(N-len(w))*[0])
plot([2*pi*k/N for k in range(-N//2,N//2)],[abs(W[k]/W[0]) for k in range(-N//2,N//2)])
xticks([-pi,-pi/2,0,pi/2,pi],[’$-\pi$’,’$-\pi/2$’,’0’,’$\pi/2$’,’π’])
xlabel(’Frequency (Ω)’)
title(’Rectangular Window’)
show()

Rectangular Window

Definition:

wr[n] =
{

1
2M−1 0 ≤ n < 2M − 1
0 otherwise

Triangular Window

Definition:

wt[n] =

n+1
M2 if 0 ≤ n < M
2M−n−1
M2 if M ≤ n < 2M − 1

0 otherwise

• Make a plot of wt[n] versus n.

• Determine the DT Fourier Transform Wt(Ω).

• Make a plot of Wt(Ω) versus Ω.

Triangular Window

Definition:

wt[n] =

n+1
M2 if 0 ≤ n < M
2M−n−1
M2 if M ≤ n < 2M − 1

0 otherwise

from matplotlib.pyplot import ion,plot,stem,xticks,xlabel,title,legend,show
from lib6003.fft import fft
from math import pi,cos,sin

w = [(n+1)/M/M for n in range(M)]+[(2*M-n-1)/M/M for n in range(M,2*M-1)]
stem(w+100*[0])
xlabel(’Time (samples)’)
title(’Triangular Window’)
show()
W = fft(w+(N-len(w))*[0])
plot([2*pi*k/N for k in range(-N//2,N//2)],[abs(W[k]/W[0]) for k in range(-N//2,N//2)])
xticks([-pi,-pi/2,0,pi/2,pi],[’$-\pi$’,’$-\pi/2$’,’0’,’$\pi/2$’,’π’])
xlabel(’Frequency (Ω)’)
title(’Triangular Window’)
show()

Triangular Window

Definition:

wt[n] =

n+1
M2 if 0 ≤ n < M
2M−n−1
M2 if M ≤ n < 2M − 1

0 otherwise

Hann Window

Definition:

wh[n] =
{

1
5 sin2

(
π∗(n+1)
2M−1

)
0 ≤ n < 2M − 1

0 otherwise

• Make a plot of wh[n] versus n.

• Determine the DT Fourier Transform Wh(Ω).

• Make a plot of Wh(Ω) versus Ω.

Hann Window

Definition:

wh[n] =
{

1
5 sin2

(
π∗(n+1)
2M−1

)
0 ≤ n < 2M − 1

0 otherwise

from matplotlib.pyplot import ion,plot,stem,xticks,xlabel,title,legend,show
from lib6003.fft import fft
from math import pi,cos,sin

M = 15
N = 1024
w = [sin(pi*(n+1)/(2*M))**2/M for n in range(2*M-1)]
stem(w+100*[0])
xlabel(’Time (samples)’)
title(’Hann Window’)
show()
W = fft(w+(N-len(w))*[0])
plot([2*pi*k/N for k in range(-N//2,N//2)],[abs(W[k]/W[0]) for k in range(-N//2,N//2)])
xticks([-pi,-pi/2,0,pi/2,pi],[’$-\pi$’,’$-\pi/2$’,’0’,’$\pi/2$’,’π’])
xlabel(’Frequency (Ω)’)
title(’Hann Window’)
show()

Hann Window

Definition:

wh[n] =
{

1
5 sin2

(
π∗(n+1)
2M−1

)
0 ≤ n < 2M − 1

0 otherwise

Compare

Superpose the plots of Wr(Ω), Wt(Ω), and Wh(Ω).

What are the important differences?

Compare

Superpose the plots of Wr(Ω), Wt(Ω), and Wh(Ω).

What are the important differences?

