6.3000: Signal Processing

Fourier Series Trig Form

Representing Signals as Fourier Series

- Synthesis: making a signal from components
- Analysis: finding the components

Start With Some Basic Transformations

How many images match the expressions beneath them?

Start With Some Basic Transformations

$$\begin{array}{ll} x = 0 & \to f_1(0, y) = f(0, y) & \checkmark \\ x = 250 & \to f_1(250, y) = f(500, y) & \times \end{array}$$

$$\begin{array}{ll} x = 0 & \to f_2(0, y) = f(-250, y) & \checkmark \\ x = 250 & \to f_2(250, y) = f(250, y) & \checkmark \end{array}$$

$$\begin{array}{ll} x = 0 & \to f_3(0,y) = f(-250,y) & \times \\ x = 250 & \to f_3(250,y) = f(-500,y) & \times \end{array}$$

Start With Some Basic Transformations

How many images match the expressions beneath them? 1

Fourier Series

Fourier representations are a major theme of this subject. The basic ideas were described in lecture:

Synthesis Equation (making a signal from components):

$$f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(\frac{2\pi kt}{T}\right) + \sum_{k=1}^{\infty} d_k \sin\left(\frac{2\pi kt}{T}\right)$$

Analysis Equations (finding the components):

$$c_0 = \frac{1}{T} \int_T f(t) dt$$

$$c_k = \frac{2}{T} \int_T f(t) \cos\left(\frac{2\pi kt}{T}\right) dt ; \quad k \ge 1$$

$$d_k = \frac{2}{T} \int_T f(t) \sin\left(\frac{2\pi kt}{T}\right) dt ; \quad k \ge 1$$

Warm Up

Find the Fourier series coefficients (c_k and d_k) for

 $f(t) = \cos(t)$

Warm Up

Find the Fourier series coefficients $(c_k \text{ and } d_k)$ for

$$f(t) = \cos(t)$$

We can find c_k and d_k directly from the synthesis equation:

$$f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(\frac{2\pi kt}{T}\right) + \sum_{k=1}^{\infty} d_k \sin\left(\frac{2\pi kt}{T}\right)$$

The function f(t) is periodic in time with period

 $T = 2\pi$.

The coefficients can be found by matching the expression on the left with that on the right:

$$c_k = \begin{cases} 1 & k = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$d_k = 0$$

There is a single non-zero Fourier coefficient: $c_1 = 1$.

Warm Up

Alternatively, we can calculate c_k and d_k from the analysis equations:

$$\begin{aligned} f(t) &= \cos(t) \\ c_0 &= \frac{1}{2\pi} \int_T f(t) \, dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(t) \, dt = \frac{1}{2\pi} \sin(t) \Big|_{-\pi}^{\pi} = 0 \\ \text{For } k &> 0: \\ c_k &= \frac{2}{T} \int_T f(t) \cos\left(\frac{2\pi kt}{T}\right) \, dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(kt) \, dt \\ c_1 &= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(t) \, dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2} + \frac{1}{2}\cos(2t)\right) \, dt = \frac{1}{\pi} \left(\frac{t}{2} + \frac{1}{4}\sin(2t)\right) \Big|_{-\pi}^{\pi} = 1 \\ \text{For } k > 1: \\ c_k &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\cos\left((k+1)t\right) + \cos\left((k-1)t\right)\right) \, dt \\ &= \frac{1}{2\pi} \left[\frac{\sin\left((k+1)t\right)}{k+1} + \frac{\sin\left(k-1\right)t\right)}{k-1}\right]_{-\pi}^{\pi} = 0 \end{aligned}$$

 $d_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(kt) dt = 0 \quad \text{(integrand is anti-symmetric)}$

Fourier Series Coefficients

How many of the following functions have **exactly one** non-zero Fourier series coefficient?

- $f_1(t) = \cos^2 t$
- $f_2(t) = \sin t \cos t$
- $f_3(t) = 4\cos^3 t 3\cos t$
- $f_4(t) = \cos(12t)\cos(4t)\cos(2t)$

Fourier Series Coefficients

How many of the following functions have **exactly one** non-zero Fourier series coefficient? 2: $f_2(t)$ and $f_3(t)$

$$f_1(t) = \cos^2(t) = \frac{1}{2} + \frac{1}{2}\cos(2t)$$

 \rightarrow 2 non-zero components: c_0 and c_1 . (could this also be c_0 and c_2 ?)

$$f_2(t) = \sin(t)\cos(t) = \frac{1}{2}\sin(2t) + \frac{1}{2}\sin(0) = \frac{1}{2}\sin(2t)$$

 $\rightarrow 1 \text{ non-zero component: } d_1.$

$$f_3(t) = 4\cos^3(t) - 3\cos(t) = \cos(t)\left(4\cos^2(t) - 3\right)$$

= $\cos(t)\left(2\cos(2t) - 1\right) = \cos(t) + \cos(3t) - \cos(t) = \cos(3t)$

ightarrow 1 non-zero component: $c_1.$

$$f_4(t) = \cos(12t)\cos(4t)\cos(2t) = \cos(12t)\left(\frac{1}{2}\cos(6t) + \frac{1}{2}\cos(2t)\right)$$
$$= \frac{1}{4}\cos(18t) + \frac{1}{4}\cos(6t) + \frac{1}{4}\cos(14t) + \frac{1}{4}\cos(10t)$$
$$\to 4 \text{ non-zero components: } c_3, c_5, c_7, \text{ and } c_9.$$

Consider a Fourier series representation of the following function.

- What is the approximate value of c_0 ?
- Which non-DC Fourier coefficient has the largest absolute value? What's the sign of that coefficient?
- Determine an expression for the Fourier coefficients of f(t).
- Compute the sum of the first 100 terms in the Fourier series of f(t).

Consider a Fourier series representation of the following function.

Q: What is the approximate value of c_0 ?

A: c_0 is the average value, which is clearly greater than $\frac{1}{2}$ but less than 1.

More exactly,
$$c_0 = \frac{1}{T} \int_T f(t) dt = \frac{1}{\pi} \int_0^\pi \sin(t) dt = -\frac{\cos(t)}{\pi} \Big|_0^\pi = \frac{2}{\pi} \approx 0.64$$

Consider a Fourier series representation of the following function.

Q: Which non-DC Fourier coefficient has the largest absolute value? What's the sign of that coefficient?

01.

A: biggest deviations from mean at t = 0 and $t = \frac{\pi}{2} \rightarrow -\cos(t)$.

$$f(t) = |\sin(t)|$$
...
$$c_{1} = \frac{2}{T} \int_{T} f(t) \cos\left(\frac{2\pi t}{T}\right) dt = \frac{2}{\pi} \int_{0}^{\pi} \sin(t) \cos(2t) dt = \frac{1}{\pi} \int_{0}^{\pi} \left(\sin(3t) - \sin(t)\right)$$

$$= \frac{1}{\pi} \left[-\frac{\cos(3t)}{3} + \cos(t)\right]_{0}^{\pi} = -\frac{4}{3\pi} \approx -0.42$$

I • (·) I

Consider a Fourier series representation of the following function.

Determine an expression for the Fourier coefficients of f(t).

The function is symmetric about t = 0, so $d_k = 0$ for all k.

$$c_{0} = \frac{1}{\pi} \int_{0}^{\pi} \sin(t) dt = -\frac{\cos(t)}{\pi} \Big|_{0}^{\pi} = \frac{2}{\pi}$$

$$c_{k} = \frac{2}{\pi} \int_{0}^{\pi} \sin(t) \cos(2kt) dt \quad ; k \ge 1$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \left(\sin\left((2k+1)t\right) - \sin\left((2k-1)t\right) \right) dt$$

$$= \frac{1}{\pi} \left[-\frac{\cos\left((2k+1)t\right)}{2k+1} + \frac{\cos\left((2k-1)t\right)}{2k-1} \right]_{0}^{\pi} = \frac{-4/\pi}{4k^{2}-1}$$

Verify Fourier Series of Rectified Sine Wave Numerically

Compute the sum of the first 100 terms in the Fourier series of f(t).

Verify Fourier Series of Rectified Sine Wave Numerically

Compute the sum of the first 100 terms in the Fourier series of f(t).

```
from math import cos, pi
from matplotlib.pyplot import plot, show
ff = []
tt = []
tt = []
t = -1.2*pi
while t<1.2*pi:
    ff.append(2/pi+sum([-4/pi/(4*k*k-1)*cos(2*k*t) for k in range(1,100)]))
    tt.append(t)
    t += 0.01
plot(tt,ff)
show()</pre>
```


Trig Table

sin(a+b) = sin(a) cos(b) + cos(a) sin(b)sin(a-b) = sin(a) cos(b) - cos(a) sin(b) $\cos(a+b) = \cos(a) \cos(b) - \sin(a) \sin(b)$ $\cos(a-b) = \cos(a) \cos(b) + \sin(a) \sin(b)$ $\tan(a+b) = (\tan(a)+\tan(b))/(1-\tan(a) \tan(b))$ $\tan(a-b) = (\tan(a)-\tan(b))/(1+\tan(a)) \tan(b)$ sin(A) + sin(B) = 2 sin((A+B)/2) cos((A-B)/2)sin(A) - sin(B) = 2 cos((A+B)/2) sin((A-B)/2) $\cos(A) + \cos(B) = 2 \cos((A+B)/2) \cos((A-B)/2)$ $\cos(A) - \cos(B) = -2 \sin((A+B)/2) \sin((A-B)/2)$ sin(a+b) + sin(a-b) = 2 sin(a) cos(b)sin(a+b) - sin(a-b) = 2 cos(a) sin(b) $\cos(a+b) + \cos(a-b) = 2 \cos(a) \cos(b)$ $\cos(a+b) - \cos(a-b) = -2 \sin(a) \sin(b)$ $2 \cos(A) \cos(B) = \cos(A-B) + \cos(A+B)$

 $2 \sin(A) \sin(B) = \cos(A-B) - \cos(A+B)$ $2 \sin(A) \cos(B) = \sin(A+B) + \sin(A-B)$ $2 \cos(A) \sin(B) = \sin(A+B) - \sin(A-B)$