
6.3000: Signal Processing

Fourier Series Complex Form

Synthesis Equation (making a signal from components):

f(t) = f(t+ T ) =
∞∑

k=−∞
ake

jkωot

Analysis Equation (finding the components)

ak = 1
T

∫
T
f(t)e−jkωotdt

where ωo = 2π
T
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Representations of Complex Numbers

Let c represent a complex number.

Re

Im

c

θ

a

b

r

r2 = a2 + b2

tan θ = b
a

rectangular form: c = a+ jb

polar (phasor) form: r∠θ
Euler form: r e jθ

Find

∠(jc)− ∠(c)
which can also be written as

arg(jc)− arg(c)



Representations of Complex Numbers

Find ∠(jc)− ∠(c).

Rectangular coordinates:

∠(c) = ∠(a+ jb) = atan2(b, a)

∠(jc) = ∠(ja− b) = atan2(a,−b)

→ ∠(jc)− ∠(c) = atan2(a,−b)− atan2(b, a)

If you are better at trig than I am, ...

atan2(y1, x1)± atan2(y2, x2) = atan2(y1x2 ± y2x1, x1x2 ∓ y1y2)

atan2(a,−b)−atan2(b, a) = atan2(a2 + b2,−ab+ ba) = atan2(a2 + b2, 0) = π

2



Representations of Complex Numbers

Find ∠(jc)− ∠(c).

Graphically:

c = a+ jb

jc = ja− b

Re

Im

c

a

b

Re

Im

jc

−b

a

From the plot, we see that jc is a π
2 rotation of c.

Therefore ∠(jc)− ∠(c) = π
2 .



Representations of Complex Numbers

Find ∠(jc)− ∠(c).

Using Euler’s equation:

c = re jθ

jc = jre jθ = re j
π
2 e jθ = re j(θ+π

2 )

Therefore ∠(jc)− ∠(c) = θ + π
2 − θ = π

2 .

The point of this question is that some operations on complex numbers

are easy to think about in Cartesian coordinates, while others are easy to

think about in polar coordinates (or equivalently with Euler’s Formula).



Complex Numbers

How many of the following are true?

• 1
cos θ + j sin θ = cos θ − j sin θ

• (cos θ + j sin θ)n = cos(nθ) + j sin(nθ)

• |2 + j2 + e
jπ
4 | = |2 + j2|+ |e

jπ
4 |

• Im
(
jj
)
> Re

(
jj
)

• tan−1
(1

2

)
+ tan−1

(1
3

)
= tan−1 1



Complex Numbers

1
cos θ + j sin θ

?
= cos θ − j sin θ

cos θ + j sin θ = ejθ

1
cos θ + j sin θ = 1

ejθ
= e−jθ = cos(−θ) + j sin(−θ) = cos θ − j sin θ

1
cos θ + j sin θ = cos θ − j sin θ

√



Complex Numbers

(cos θ + j sin θ)n ?
= cos(nθ) + j sin(nθ)

(cos θ + j sin θ)n = (ejθ)n = ejnθ = cos(nθ) + j sin(nθ)

(cos θ + j sin θ)n = cos(nθ) + j sin(nθ)
√



Complex Numbers

|2 + j2 + e
jπ
4 | ?

= |2 + j2|+ |e
jπ
4 |

|2 + j2 + e
jπ
4 | = |2

√
2 e

jπ
4 + e

jπ
4 |

= |(2
√

2 + 1)e
jπ
4 |

= |(2
√

2 + 1)||e
jπ
4 |

= 2
√

2 + 1

|2 + j2|+ |e
jπ
4 | = 2

√
2 + 1

|2 + j2 + e
jπ
4 | = |2 + j2|+ |e

jπ
4 |

√

This is only true because the angles of 2 + j2 and e
jπ
4 are equal!

|a+ b| is NOT generally equal to |a|+ |b|.



Complex Numbers

Im
(
jj
) ?

> Re
(
jj
)

jj =
(
ejπ/2

)j
= e−π/2 which is real and > 0.

Therefore Im
(
jj
)

= 0 and is always less than the real part.

Caveat: There are other ways to express j.

jj = (ej2π(n+ 1
4 ))j = e−2π(n+ 1

4 )

All of these alternatives lead to real numbers that are > 0.

Therefore the original premise is always false.

Im
(
jj
)
> Re

(
jj
)

X

Notice that jj is multi-valued, much like the nth root of 1.



Complex Numbers

tan−1
(1

2

)
+ tan−1

(1
3

) ?
= tan−1 1

Let c1 = 2+j and c2 = 3+j so that c3 = (2+j)(3+j) = 5+5j.
The angle of a product is the sum of the angles of the constituents:

∠c1 + ∠c2 = ∠c3

This proves the premise.

More generally,

c1 could be any complex number whose angle is tan−1 (1
2
)
,

c2 could be any complex number whose angle is tan−1 (1
3
)
,

and the product c1c2 would have angle tan−1(1),

tan−1
(1

2

)
+ tan−1

(1
3

)
= tan−1 1

√



Complex Numbers

How many of the following are true?

• 1
cos θ + j sin θ = cos θ − j sin θ

√

• (cos θ + j sin θ)n = cosnθ + j sinnθ
√

• |2 + j2 + e
jπ
4 | = |2 + j2|+ |e

jπ
4 |

√

• Im
(
jj
)
> Re

(
jj
)

X

• tan−1
(1

2

)
+ tan−1

(1
3

)
= tan−1 1

√



Pulse Train

Find the Fourier series coefficients ak for x(t):

x(t)

t
−T −S TS

1



Pulse Train

Find the Fourier series coefficients ak for x(t):

x(t)

t
−T −S TS

1

ak = 1
T

∫
T
x(t) e−j

2πk
T

tdt

= 1
T

∫ S

−S
e−j

2πk
T

tdt = 1
T

e−j
2πkS
T − e j

2πkS
T

−j 2πk
T

= sin (2πkS/T )
πk

Notice that ak is real-valued:

Im (ak) = 0
and ak is a symmetric function of k:

a−k = ak



Properties of Fourier Series

If x(t) is real-valued, symmetric function of t then ak is a real-valued,

symmetric function of k.

ak = 1
T

∫
T
x(t)e−j

2πk
T

tdt

Choose symmetric region of integration and expand the exponential.

ak = 1
T

∫ T/2

−T/2
x(t)

(
cos(2πkt/T )− j sin(2πkt/T )

)
dt

If x(t) is real and symmetric, then the imaginary part integrates to zero.

ak = 1
T

∫ T/2

−T/2
x(t) cos(2πkt/T ) dt

The result is a real-valued and symmetric function of k.



Pulse Train

What would happen to Fourier series if you delayed x(t) by T/2?

x(t− T/2)

t
−T T

T
/
2−
S

T
/
2+
ST

2

1



Pulse Train

What would happen to Fourier series if you delayed x(t) by T/2?
x(t− T/2)

t
−T T

T
/
2−
S

T
/
2+
ST

2

1

a′k = 1
T

∫ T
2 +S

T
2 −S

e−j
2πk
T

tdt

= 1
T

e−j
2πk(T/2+S)

T − e−j
2πk(T/2−S)

T

−j 2πk
T

= e−jπk
(

sin (2πkS/T )
πk

)

Delay by T/2 changes the phase but not the magnitude.

x(t) ctfs=⇒ ak

x(t− T/2) ctfs=⇒ e−jπk ak



Pulse Train

What would happen if you delayed x(t) by T/4?

x(t− T/2)

t
−T T

T
/
4−
S

T
/
4+
S

1



Pulse Train

What would happen if you delayed x(t) by T/4?
x(t− T/2)

t
−T T

T
/
4−
S

T
/
4+
S

1

a′k = 1
T

∫ T
4 +S

T
4 −S

e−j
2πk
T

tdt

= 1
T

e−j
2πk(T/4+S)

T − e−j
2πk(T/4−S)

T

−j 2πk
T

= e−jπk/2
(

sin (2πkS/T )
πk

)

Delay by T/4 changes the phase but not the magnitude.

x(t) ctfs=⇒ ak

x(t− T/4) ctfs=⇒ e−jπk/2 ak



Delay Property of Fourier Series

Delays in time change only the phase of the Fourier series.

ak = 1
T

∫
T
x(t)e−j

2πk
T

tdt

a′k = 1
T

∫
T
x(t−t0)e−j

2πk
T

tdt

Let τ = t− t0.

a′k = 1
T

∫
T
x(τ)e−j

2πk
T

(τ+t0) dτ

= e−j
2πk
T

t0
( 1
T

∫
T
x(τ)e−j

2πk
T

τdτ
)

= e−j
2πk
T

t0 ak

x(t) ctfs=⇒ ak

x(t− t0) ctfs=⇒ e−j
2πk
T

t0 ak



Delay Property of Fourier Series

Complex exponential form simplifies expression of delay property.

delay complex exponential form trig form

T/2 mult by e−jπk
c′k = (−1)kck
d′k = (−1)kdk

T/4 mult by e−jπk/2 complicated

t0 mult by e−j
2πk
T

t0 very complicated



Parseval’s Theorem

Determine an expression for∫
T

(f(t))2dt

in terms of the Fourier series coefficients ak of f(t).

f(t) =
∞∑

k=−∞
ake

jkωot



Parseval’s Theorem

Determine an expression for∫
T

(f(t))2dt

in terms of the Fourier series coefficients ak of f(t).

f(t) =
∞∑

k=−∞
ake

jkωot

∫
T

(f(t))2dt =
∫
T

( ∞∑
k=−∞

ake
jkωot

)( ∞∑
l=−∞

ale
jlωot

)
dt

If akale
j(k+l)ωot is absolutely summable and absolutely integrable, then we

can swap the order of summation and integration.∫
T

(f(t))2dt =
∞∑

k=−∞

∞∑
l=−∞

∫
T
akale

j(k+l)ωotdt

By orthogonality, all of the exponentials integrate to zero except if k+l = 0.∫
T

(f(t))2dt =
∞∑

k=−∞
Taka−k



Fourier Series Matching

Match the signals (left column) to Fourier series coefficients (right).

t

x1(t)

0 11/4

1

k

Re ak

k

Im ak

t

x2(t)

0 11/4

1

k

Re bk

k

Im bk

t

x3(t)

0 11/4

1

k

Re ck

k

Im ck

t

x4(t)

1/4

1

k

Re dk

k

Im dk



Fourier Series Matching

Match the signals (left column) to Fourier series coefficients (right).

x3(t) is a real-valued, symmetric function of time.

Therefore, its Fourier series coefficients form a real-valued, symmetric func-

tion of k.

– x3(t)→ ak

x4(t) is a real-valued, antisymmetric function of time.

Therefore, its Fourier series coefficients form a purely imaginary, antisym-

metric function of k.

– x4(t)→ dk

x1(t) = x3(t) + x4(t), therefore its Fourier series coefficients are ak + dk.

– x1(t)→ ck

x2(t) = x3(t)− x4(t), therefore its Fourier series coefficients are ak − dk.

– x2(t)→ bk


