
6.3000: Signal Processing

Discrete Cosine Transform
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Motivation

The Discrete Fourier Transform (DFT) implicitly represents the frequencies

that are contained in a periodically extended version of the input signal,

and periodic extension can generate frequencies that are not present in

the original signal.

Consider the following 8× 8 example.

The brightnesses of left and right edges are different and will generate a

sequence of large transitions when periodically extended.



Motivation: 1D

Consider a single row from the previous image. The DFT implicitly extends

the signal (here a ramp) periodically.

n

x[n] = x[n+ 8]

0 8
Although the function is smooth from n = 0 to 7, the periodic extention

contains a series of steps.



Motivation: 1D

We can eliminate the step discontinuities by first replicating one period in

reverse order and then extending the result periodically.

n

y[n] = y[n+ 16]

0 16
The resulting signal is continuous across the edges (however the slope is

still discontinuous).



Motivation: 1D

Finally, insert zeros between successive samples, and shift result right by 1.

n

z[n] = z[n+ 32]

0 16 32
The resulting signal is real-valued, symmetric about n = 0, periodic in 4N ,

and contains only odd numbered samples.

The DFT of this signal is real, symmetric about k = 0 and anti-periodic.

It is completely characterized by N values: Z[0] to Z[7].

k

Z[k]

8 16−8−16

This process is captured in the Discrete Cosine Transform.



Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is described by analysis and syn-

thesis equations that are analogous to those of the DFT.
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Comparison of DFT and DCT Basis Functions

DFT (real and imaginary parts) versus DCT.
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DFT Magnitudes and DCT Amplitudes

For each of the DT signals shown in the left column on the following page,

find the associated DFT magnitude from the center column and DCT

amplitude from the right column, and enter the appropriate labels in the

answer boxes.



Answers

DFT DCT

(a–f) (A–F)

signals DFT magnitudes DCT amplitude

n

f1[n] = δ[n]
1.00

k

a
0.50

k

A
0.50

n

f2[n] = δ[n−1]
1.00

k

b
0.12

k

B
0.12

n

f3[n] = cos(2πn/8)
1.00

k

c
0.38

k

C
0.12

n

f4[n] = cos(2πn/8+π/8)
0.92

k

d
1.00

k

D
0.42

n

f5[n] = cos(3πn/8)
1.00

k

e
0.35

k

E
0.50

n

f6[n] = cos(3πn/8+3π/16)
0.98

k

f
0.50

k

F
0.46



Part 1. The DFT of δ[n] is 1/N . Therefore F1[k] = 1/N → panel b.
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→ panel B.

The DCT of a unit-sample signal is NOT the same as the DFT of a unit-sample

signal!

Part 2. The DFT of δ[n−1] is 1
8e

−j 2πk
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→ panel C.

Time shifts are not as simple with the DCT as they were with the DFT.

Part 3. f3[n] is the fundamental frequency for N = 8. The DFT has non-zero

contributions only at k = ±1. Therefore |F3[k]| → panel a.

DFT basis functions are integer multiples of the fundamental frequency. By con-

trast, DCT basis functions are half-integer multiples. Therefore we expect a non-

zero component at k = 2. However, the last sample of all DCT basis functions

is either equal to the first sample or equal to the negative of the first sample.

Therefore f3[n] is NOT a basis function for the DCT.

→ panel F.



Part 4. f4[n] is also at the fundamental frequency for N = 8. The DFT has

non-zero contributions only at k = ±1. Therefore |F4[k]| → panel a.

The frequency of f4[n] is the same as that of f3[n] but the phase is different.

f4[7] = f4[0]. Therefore f4[n] IS a basis function.

→ panel E.

Notice that both f3[n] and f4[n] have simple representations as DFTs but not as

DCTs.

Part 5. The frequency of f5[n] is 3
2 times the fundamental frequency. The disconti-

nuity created by periodic extension of f5[n] generates components at all frequencies,

although the peak is near k = 3/2. Thus the answer could be c or e. The DC com-

ponent of f5[n] is non-zero (4 positive numbers and 3 negative).

→ panel e.

Since the frequency of f5[n] is a half-integer multiple of the fundamental, it could

be a DCT basis function at k = 3. However, the final value is not equal to the initial

value or its negative.

→ panel D.

Part 6. f6[n] is a phase shifted version of f5[n]. Now the DC value is zero.

→ panel c.

f6[n] is a basis function of the DCT.

→ panel A.

Notice the f6[n] has a simple representation as a DCT but not as a DFT.



DCT Basis Functions

Much of the utility of Fourier transforms in general and the DFT in par-

ticular results from properties of the Fourier basis functions:
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To better understand the DCT, we need to similarly understand its basis

functions.
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DCT Basis Functions

The kth DCT basis function of order N is given by

φk[n] = cos
(
πk

N

(
n+ 1

2

))
.

How many of the following symmetries are true?

• φk[n+2N ] = φk[n]

• φk[n+N ] = (−1)kφk[n]

• φk[n−N ] = (−1)kφk[n]

• φk[(N−1)−n] = (−1)kφk[n]



DCT Basis Functions

The kth DCT basis function of order N is given by
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.

The first property

φk[n+2N ] = φk[n]
follows from the periodicity of the cosine function, as follows.
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Notice that φk[n] is not periodic in N !



DCT Basis Functions

The kth DCT basis function of order N is given by
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.

The second property

φk[n+N ] = (−1)kφk[n]
addresses symmetry in N .
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DCT Basis Functions

The kth DCT basis function of order N is given by

φk[n] = cos
(
πk

N

(
n+ 1

2

))
.

The third property

φk[n−N ] = (−1)kφk[n]
follows from the first two.

φk[n−N ] = φk[n+2N−N ] = φk[n+N ] = (−1)kφk[n]



DCT Basis Functions

The kth DCT basis function of order N is given by
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.

The fourth property

φk[(N−1)−n] = (−1)kφk[n]
describes symmetry about the point n = (N−1)/2.
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DCT Basis Functions

We can use the previous properties to calculate useful facts.
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DCT Basis Functions

Show that
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If k is odd, then by property 4, the sum

N−1∑
n=0

φk[n] zero.
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Rewrite the cosine terms as the real parts of complex exponentials:
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(continued on next page)



continued

Let
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Thus the sum
N−1∑
n=0

φk[n] = Nδ[k] .



Orthogonality

Show that

N−1∑
n=0

φk[n]φl[n] =


N if k = l = 0
N/2 if k = l 6= 0
0 otherwise

This orthogonality property is the basis of the analysis equation.



Orthogonality

Show that

N−1∑
n=0

φk[n]φl[n] =


N if k = l = 0
N/2 if k = l 6= 0
0 otherwise
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Now we can use the previous result to show that the first sum is equal to
N
2 δ[k−l] and the second sum is equal to N

2 δ[k+l].
Since both k and l must be between 0 and N−1, the first term is N

2 if k = l

and the second term is N
2 if k = l = 0.



Compaction: Gradient

If a signal has predominately low-frequency content, then the higher order

coefficients of the DCT tend to decrease faster than the corresponding

coefficients of the DFT.

Here are results for a ramp.
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Note that the same scales apply for XC and X.



Compaction: Sinusoids

The same sort of compaction results for sinusoidal signals.
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Same scales in each panel.


