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Last Time: The System Abstraction

Represent a system (physical, mathematical, or computational) by the way

it transforms an input signal into an output signal.

system
signal

in

signal

out



Properties of Systems

We will focus primarily on systems that have two important properties:

• linearity

• time invariance

Such systems are both prevalent and mathematically tractable.



Additivity

A system is additive if its response to a sum of signals is equal to the

sum of the responses to each signal taken one at a time.

Given

systemx1[n] y1[n]
and

systemx2[n] y2[n]

the system is additive if

systemx1[n] + x2[n] y1[n] + y2[n]

for all possible inputs and all times n.



Homogeneity

A system is homogeneous if multiplying its input signal by a constant mul-

tiplies the output signal by the same constant.

Given

systemx1[n] y1[n]

the system is homogeneous if

systemαx1[n] αy1[n]

for all α and all possible inputs and all times n.



Linearity

A system is linear if its response to a weighted sum of input signals is

equal to the weighted sum of its responses to each of the input signals.

Given

systemx1[n] y1[n]

and

systemx2[n] y2[n]

the system is linear if

systemαx1[n] + βx2[n] αy1[n] + βy2[n]

for all α and β and all possible inputs and all times n.

A system is linear if it is both additive and homogeneous.



Time-Invariance

A system is time-invariant if delaying the input signal simply delays the

output signal by the same amount of time.

Given

systemx[n] y[n]

the system is time invariant if

systemx[n−n0] y[n−n0]

for all n0 and for all possible inputs and all times n.



Linear Difference Equations with Constant Coefficients

If a discrete-time system can be described by a linear difference equation

with constant coefficients, then the system is linear and time-invariant.

General form:∑
l

cly[n−l] =
∑
m

dmx[n−m]

Such systems are easily shown to be linear and time-invariant.

Additivity: output of sum is sum of outputs∑
l

cl(y1[n−l] + y2[n−l]) =
∑
m

dm(x1[n−m] + x2[n−m])

Homogeneity: scaling an input scales its output∑
l

cl(αy[n−l]) =
∑
m

dm(αx[n−m])

Time invariance: delaying an input delays its output∑
l

cly[(n−n0)−l] =
∑
m

dmx[(n−n0)−m]



Today: Representing a System by its Unit-Sample Response

Describe a system (physical, mathematical, or computational) by the way

it transforms an input signal into an output signal.

system
signal

in

signal

out

This abstraction is particularly powerful for linear and time-invariant sys-

tems, which are both prevalent and mathematically tractable.

Three important representations for LTI systems:

• Difference Equation: algebraic constraint on samples
√

• Convolution: represent a system by its unit-sample response

• Filter: represent a system by its frequency response



Superposition

Response of an LTI system is determined by the system’s response to δ[n].
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Unit-Sample Response and Convolution

If a system is linear and time-invariant (LTI), its input-output relation is

completely specified by the system’s unit-sample response h[n].

1. One can always find the unit-sample response of a system.

LTIδ[n] h[n]

2. Time invariance implies that shifting the input simply shifts the output.

LTIδ[n−m] h[n−m]

3. Homogeneity implies that scaling the input simply scales the output.

LTIx[m]δ[n−m] x[m]h[n−m]

4. Additivity implies that the response to a sum is the sum of responses.

LTIx[n] =
∞∑

m=−∞
x[m]δ[n−m] y[n] =

∞∑
m=−∞

x[m]h[n−m]

This rule for combining the input x[n] with the unit-sample response h[n]
is called convolution.



Convolution

The response of an LTI system to an arbitrary input x[n] can be found by

convolving that input with the unit-sample response h[n] of the system.

LTIx[n] y[n]

y[n] =
∞∑

m=−∞
x[m]h[n−m] ≡ (x ∗ h)[n]

This is an amazing result.

We can represent the operation of an LTI system by a single signal!



Notation

Convolution is represented with an asterisk.

∞∑
m=−∞

x[m]h[n−m] ≡ (x ∗ h)[n]

It is customary (but confusing) to abbreviate this notation:

(x ∗ h)[n] = x[n] ∗ h[n]
x[n] ∗ h[n] looks like an operation of samples; but it is not!

x[1] ∗ h[1] 6= (x ∗ h)[1]
Convolution operates on signals not samples.

Unambiguous notation:

y = x ∗ h

y[n] =
∞∑

m=−∞
x[m]h[n−m] ≡ (x ∗ h)[n]

The symbols x and h represent DT signals.

Convolving x with h generates a new DT signal y = x ∗ h.



Structure of Convolution

Focus on computing the nth output sample.

y[1] =
∞∑

m=−∞
x[m]h[1−m]

mm

x[m] h[m]

h[1−m]h[1−m]

x[m]h[1−m]

∗

∞∑
m=−∞

mm

mm
−2−1 0 1 2 3 4 5

mm

−2−1 0 1 2 3 4 5
mm = 2



Check Yourself

Consider the convolution of two geometric sequences:

1

(2
3
)n
u[n]

∗ 1

(2
3
)n
u[n]

Which plot below shows the result of the convolution above?

1.
1

2.
1

3.
1

4.
1

5. none of the above



Unit-Sample Response

The unit-sample response is a complete description of an LTI system.

LTIδ[n] h[n]

The response of a linear system to a unit sample signal

n

δ[n]
→

n

h[n]

can be used to compute the response to any arbitrary input signal.

y[n] = (x ∗ h)[n] ≡
∞∑

m=−∞
x[m]h[n−m]



Continuous-Time Systems

Superposition and convolution are also important for CT systems.



Linear Differential Equations with Constant Coefficients

If a continuous-time system can be described by a linear differential equation

with constant coefficients, then the system is linear and time-invariant.

General form:∑
l

cl
dly(t)
dtl

=
∑
m

dm
dmx(t)
dtm

Such systems are easily shown to be linear and time-invariant.

Additivity: output of sum is sum of outputs∑
l

cl

(
dly1(t)
dtl

+ dly2(t)
dtl

)
=
∑
m

dm

(
dmx1(t)
dtm

+ dmx2(t)
dtm

)
Homogeneity: scaling an input scales its output∑

l

cl

(
α
dly(t)
dtl

)
=
∑
m

dm

(
α
dmx(t)
dtm

)
Time invariance: delaying an input delays its output∑

l

cl
dly(t− τ)

dtl
=
∑
m

dm
dmx(t− τ)

dtm



Impulse Response

A CT system is completely characterized by its impulse response, much

as a DT system is completely characterized by its unit-sample response.

We have worked with the impulse (Dirac delta) function δ(t) previously.

It’s defined in a limit as follows.

Let p∆(t) represent a pulse of width ∆ and height 1
∆ so that its area is 1.

t

p∆(t)

∆

1
∆

Then

δ(t) = lim
∆→0

p∆(t)

t

δ(t)



Impulse Response

An arbitrary CT signal can be represented by an infinite sum of infinitesimal

impulses (which define an integral).

Approximate an arbitrary signal x(t) (blue) as a sum of pulses p∆(t) (red).

t

x(t)

x∆(t) =
∞∑

m=−∞
x(m∆)p∆(t−m∆)∆

and the limit of x∆(t) as ∆→ 0 will approximate x(t).

lim
∆→0

x∆(t) = lim
∆→0

∞∑
m=−∞

x(m∆)p∆(t−m∆)∆→
∫ ∞
−∞

x(τ)δ(t−τ) dτ

The result in CT is much like the result for DT:

x(t) =
∫ ∞
−∞

x(τ)δ(t− τ) dτ x[n] =
∞∑

m=−∞
x[m]δ(n−m)



Impulse Response

If a system is linear and time-invariant (LTI), its input-output relation is

completely specified by the system’s impulse response h(t).

1. One can always find the impulse response of a system.

systemδ(t) h(t)

2. Time invariance implies that shifting the input simply shifts the output.

systemδ(t−τ) h(t−τ)

3. Homogeneity implies that scaling the input simply scales the output.

systemx(τ)δ(t−τ) x(τ)h(t−τ)

4. Additivity implies that the response to a sum is the sum of responses.

systemx(t) =
∫ ∞
−∞

x(τ)δ(t−τ)dτ y(t) =
∫ ∞
−∞

x(τ)h(t−τ)dτ

This rule for combining the input x(t) with the impulse response h(t) is

called convolution.



Impulse Response

The impulse response is a complete description of an LTI system.

LTIδ(t) h(t)

The response of a linear system to an impulse function

t

δ(t)
→

t

h(t)

can be used to compute the response to any arbitrary input signal.

y(t) = (x ∗ h)(t) ≡
∫ ∞
−∞

x(τ)h(t− τ)dτ



Comparison of CT and DT Convolution

Convolution of CT signals is analogous to convolution of DT signals.

DT: y[n] = (x ∗ h)[n] =
∞∑

m=−∞
x[m]h[n−m]

CT: y(t) = (x ∗ h)(t) =
∫ ∞
−∞

x(τ)h(t− τ)dτ



Check Yourself

Consider the convolution of two rectangular signals:

t
∗

t

Which plot shows the result of the convolution above?

1.
t

2.
t

3.
t

4.
t

5. none of the above



Check Yourself

−1

1
2

−1 2 3 4
t

f(t)

−1

1
2

−1 2 3 4
t

g(t)

For what value of t is (f∗g)(t) greatest?

What is the maximum value of (f∗g)(t)?



Properties of Convolution

Commutivity:

(x ∗ y)(t) = (y ∗ x)(t)

(x ∗ y)(t) ≡
∫ ∞
−∞

x(τ)y(t−τ) dτ

Evaluate the integral with λ = t−τ :

(x ∗ y)(t) =
∫ −∞
∞

x(t−λ)y(λ)(−dλ)

=
∫ ∞
−∞

y(λ)x(t−λ) dλ

= (y ∗ x)(t)

h(t)x(t) (x ∗ h)(t)

x(t)h(t) (h ∗ x)(t) = (x ∗ h)(t)



Properties of Convolution

Associativity.(
(x ∗ y) ∗ z

)
(t) =

(
x ∗ (y ∗ z)

)
(t)

(
(x ∗ y) ∗ z

)
(t) ≡

∫ ∞
−∞

(∫ ∞
−∞

x(τ)y(λ−τ) dτ
)

︸ ︷︷ ︸
(x∗y)(λ)

z(t−λ) dλ

Replace λ with λ+τ and swap the order of integration:(
(x ∗ y) ∗ z

)
(t) =

∫ ∞
−∞

x(τ)
(∫ ∞
−∞

y(λ)z(t−λ−τ) dλ
)

︸ ︷︷ ︸
(y∗z)(t−λ)

dτ

=
(
x ∗ (y ∗ z)

)

g(t) h(t)

(g∗h)(t)

(x∗g)(t)
x(t)

(
(x∗g)∗h

)
(t)

x(t)
(
x∗(g∗h)

)
(t)



Properties of Convolution

Distributivity over addition.(
x ∗ (g+h)

)
(t) = (x∗g)(t) + (x∗h)(t)

(
x ∗ (g+h)

)
=
∫ ∞
−∞

x(τ)
(
g(t−τ)+h(t−τ)

)
dτ

=
∫ ∞
−∞

x(τ)g(t−τ)dτ+
∫ ∞
−∞

x(τ)h(t−τ)dτ

= (x∗g)(t) + (x∗h)(t)

g(t)

h(t)

g(t)+h(t)

+x(t)
(
x∗(g+h)(t)

)
x(t)

(
x∗(g+h)

)
(t)



Check Yourself

Match expressions on the left with functions on the right where

f(t) = e−t u(t)
g(t) = et u(−t) t

A

t
B

t
C

t
D

t
E

t
F

(f ∗ f)(t)

(g ∗ g)(t)

(f ∗ g)(t)

(g ∗ f)(t)



Summary

The response of a discrete-time, LTI system to an input x[n] can be com-

puted by convolving the input with the system’s unit sample response.

LTIx[n] y[n]

y[n] =
∞∑

m=−∞
x[m]h[n−m] ≡ (x ∗ h)[n]

The response of a continuous-time, LTI system to an input x(t) can be

computed by convolving the input with the system’s impulse response.

LTIx(t) y(t)

y(t) =
∫ ∞
−∞

x(τ)h(t− τ)dτ ≡ (x ∗ h)(t)

Convolution allows us to represent a system by a single signal!



Question of the Day

Let

f [n] =
{
n+1 if 0 ≤ n ≤ 2
0 otherwise

and

g[n] = (f ∗ f)[n]
Determine g[3].


