6.3000: Signal Processing

Systems

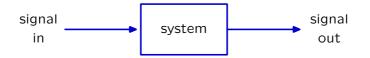
- System Abstraction
- Linearity and Time Invariance

Results for Quiz 1 have been posted. HW 5 has been posted.

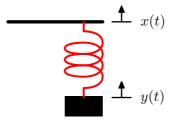
March 06, 2025

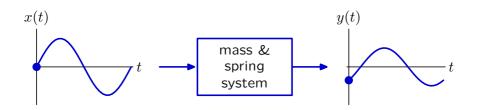
From Signals to Systems: The System Abstraction

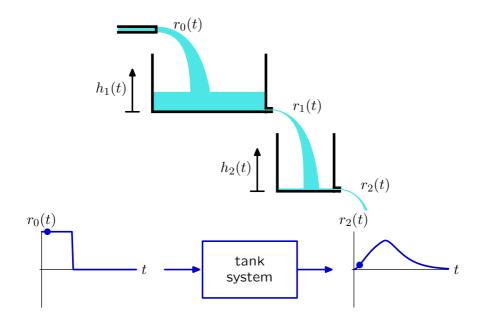
Represent a **system** (physical, mathematical, or computational) by the way it transforms an **input signal** into an **output signal**.



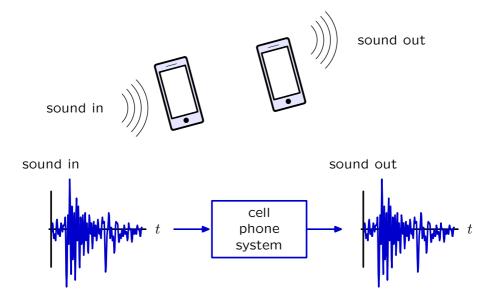
Example: Mass and Spring





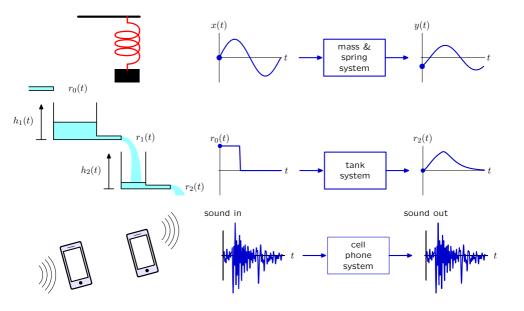


Example: Cell Phone System



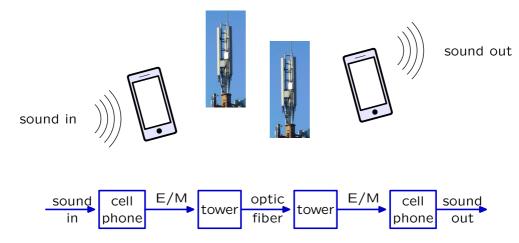
Signals and Systems: Widely Applicable

The Signals and Systems approach has broad application: electrical, mechanical, optical, acoustic, biological, financial, ...



Signals and Systems: Modular

The representation does not depend upon the physical substrate.

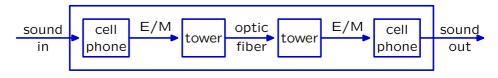


focuses on the flow of information, abstracts away everything else

Signals and Systems: Hierarchical

Representations of component systems are easily combined.

Example: cascade of component systems



Composite system

Component and composite systems have the same form, and are analyzed with same methods.

System Abstraction

The system abstraction builds on and extends our work with signals.

The remainder of this subject will focus on systems:

- **audio:** equalization, noise reduction, reverberation reduction, echo cancellation, pitch shift (auto-tune)
- **image:** smoothing, edge enhancement, unsharp masking, feature detection
- video: image stabilization, motion magnification

Each of these application areas builds directly on our work with signals.

System Abstraction

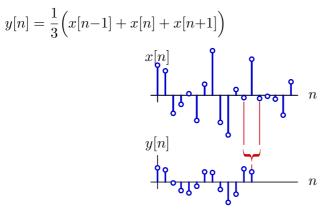
The system abstraction builds on and extends our work with signals.

Over the next week, we will look at three representations for systems:

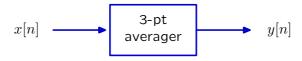
- Difference Equation: algebraic constraint on samples
- Convolution: represent a system by its unit-sample response
- Filter: represent a system by its frequency response

Example: Three-Point Averaging

The output at time n is average of inputs at times n-1, n, and n+1.



Think of this process as a system with input x[n] and output y[n].



Properties of Systems

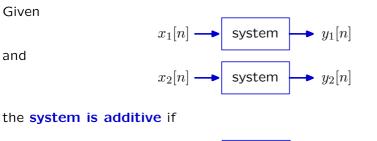
We will focus primarily on systems that have two important properties:

- linearity
- time invariance

Such systems are both useful and mathematically tractable.

Additivity

A system is additive if its response to a **sum of signals** is equal to the **sum of the responses** to each signal taken one at a time.



$$x_1[n] + x_2[n] \longrightarrow$$
 system $\longrightarrow y_1[n] + y_2[n]$

for all possible inputs and all times n.

Additivity

Example: The three-point averager is additive.

If

$$\begin{aligned} x_1[n] &\to y_1[n] = \frac{1}{3} \left(x_1[n-1] + x_1[n] + x_1[n+1] \right) \\ x_2[n] &\to y_2[n] = \frac{1}{3} \left(x_2[n-1] + x_2[n] + x_2[n+1] \right) \end{aligned}$$

and

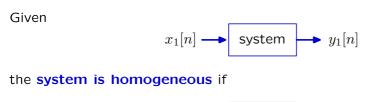
$$x_3[n] = x_1[n] + x_2[n]$$

then

$$\begin{aligned} x_3[n] &\to \frac{1}{3} \left(x_3[n-1] + x_3[n] + x_3[n+1] \right) \\ x_1[n] + x_2[n] &\to \frac{1}{3} \left((x_1[n-1] + x_2[n-1]) + (x_1[n] + x_2[n]) + (x_1[n+1] + x_2[n+1]) \right) \\ &= \frac{1}{3} \left(x_1[n-1] + x_1[n] + x_1[n+1] \right) + \frac{1}{3} \left(x_2[n-1] + x_2[n] + x_2[n+1] \right) \\ &= y_1[n] + y_2[n] \end{aligned}$$

Homogeneity

A system is homogeneous if multiplying its input signal by a constant multiplies the output signal by the same constant.



$$\alpha x_1[n] \longrightarrow$$
 system $\longrightarrow \alpha y_1[n]$

for all α and all possible inputs and all times n.

Homogeneity

Example: The three-point averager is homogeneous.

If

$$x_1[n] \to y_1[n] = \frac{1}{3} \left(x_1[n-1] + x_1[n] + x_1[n+1] \right)$$

and

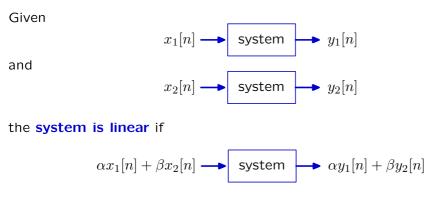
 $x_2[n] = \alpha x_1[n]$

then

$$\begin{aligned} x_2[n] &\to \frac{1}{3} \Big(x_2[n-1] + x_2[n] + x_2[n+1] \Big) \\ \alpha x_1[n] &\to \frac{1}{3} \Big(\alpha x_1[n-1] + \alpha x_1[n] + \alpha x_1[n+1] \Big) \\ &= \alpha \frac{1}{3} \Big(x_1[n-1] + x_1[n] + x_1[n+1] \Big) \\ &= \alpha y_1[n] \end{aligned}$$

Linearity

A system is linear if its response to a **weighted sum of input signals** is equal to the **weighted sum of its responses** to each of the input signals.



for all α and β and all possible inputs and all times n.

A system is linear if it is both additive and homogeneous.

Time-Invariance

A system is time-invariant if delaying the input signal simply delays the output signal by the same amount of time.

Given

$$x[n] \longrightarrow$$
 system $\longrightarrow y[n]$

the system is time invariant if

$$x[n-n_0] \longrightarrow$$
 system $\longrightarrow y[n-n_0]$

for all n_0 and for all possible inputs and all times n.

Time-Invariance

Example: The three-point averager is time invariant.

If

$$x_1[n] \to y_1[n] = \frac{1}{3} \left(x_1[n-1] + x_1[n] + x_1[n+1] \right)$$

and

$$x_2[n] = x_1[n - n_o]$$

then

$$\begin{aligned} x_2[n] &\to \frac{1}{3} \Big(x_2[n-1] + x_2[n] + x_2[n+1] \Big) \\ x_1[n-n_o] &\to \frac{1}{3} \Big(x_1[n-n_o-1] + x_1[n-n_o] + x_1[n-n_o+1] \Big) \\ &= y_1[n-n_o] \end{aligned}$$

Consider a system represented by the following difference equation:

$$y[n] = x[n] + x[n\!-\!1]$$

for all n.

Is this system linear?

Determining linearity from a difference equation representation.

Example 2.

$$y[n] = x[n] \times x[n{-}1]$$

for all n.

Is this system linear?

Determining linearity from a difference equation representation.

Example 3:

y[n] = nx[n]

for all n.

Is the system linear?

Determining time invariance from a difference equation.

Example 3:

y[n]=nx[n]

for all n.

Is the system time-invariant?

Assume that a system can be represented by a linear difference equation with constant coefficients.

$$\sum_l c_l y[n{-}l] = \sum_m d_m x[n{-}m]$$

Is such a system linear? Is such a system time invariant?

Linear Difference Equations with Constant Coefficients

If a discrete-time system can be described by a linear difference equation with constant coefficients, then the system is linear and time-invariant.

General form:

$$\sum_{l} c_{l} y[n-l] = \sum_{m} d_{m} x[n-m]$$

Additivity: output of sum is sum of outputs

$$\sum_{l} c_l(y_1[n-l] + y_2[n-l]) = \sum_{m} d_m(x_1[n-m] + x_2[n-m]) \qquad \checkmark$$

Homogeneity: scaling an input scales its output

$$\sum_{l} \alpha c_{l} y[n-l] = \sum_{m} \alpha d_{m} x[n-m] \qquad \checkmark$$

Time invariance: delaying an input delays its output

$$\sum_{l} c_l y[(n-n_0)-l] = \sum_{m} d_m x[(n-n_0)-m] \qquad \checkmark$$

Consider a system that is defined by

$$y[n] = x[n] + 1$$

Is this system linear? Is this system time invariant?

Consider the relation between homogeneity and additivity.

Which (if any) of the following are true?

- 1. Homogeneity and additivity are basically the same property.
- 2. Homogeneity is a special case of additivity.
- 3. Additivity is a special case of homogeneity.
- 4. All of the above.
- 5. None of the above.

Consider a system whose output y[n] is related to its input x[n] as follows:

$$x[n] \quad \rightarrow \quad y[n] = \begin{cases} x[n] & \text{ if } x[0] \neq x[1] \\ 0 & \text{ otherwise} \end{cases}$$

Is this system homogeneous?

Is this system additive?

Is this system linear?

Consider a system whose output $\boldsymbol{y}[\boldsymbol{n}]$ is the complex conjugate of its input.

Is this system homogeneous?

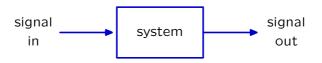
Is this system additive?

Is this system linear?

Summary: System Abstraction

The system abstraction builds on and extends our work with signals.

Goal: characterize a **system** to better understand the relation between two signals.



Three representations for systems:

- Difference Equation: algebraic constraint on samples \vee
- Convolution: represent a system by its unit-sample response
- Filter: represent a system by its frequency response

Question of the Day

Consider the following system:

$$x[n] \longrightarrow$$
 system $\rightarrow y[n] = |x[n]|$

- 1. Is the system homogeneous?
- 2. Is the system additive?
- 3. Is the sysem time-invariant?