
6.3000: Signal Processing

Short-Time Fourier Transform

• spectrograms

• overlap-add

April 01, 2025

Time versus Frequency

Fourier methods provide an alternative (frequency) view of a signal.

Two views: as a function of time or as a function of frequency.

time

freq

While each view is useful, many real-world signals are more naturally de-

scribed in a middle ground: with frequency content that varies with

time.

Time-Varying Frequency Content

Frequency content of signals such as speech and music varies with time.

Example: tones – listen to version 1 and version 2

The important information for distinguishing these signals is not obvious

in either the time or the frequency view.

Time-Varying Frequency Content

Frequency content of signals such as speech and music varies with time.

Example: tones – listen to version 1 and version 2

The important information for distinguishing these signals is not obvious

in either the time or the frequency view.

Difficult to see different frequencies in time view (left).

Difficult to see time sequence in frequency view (right).

Short-Time Fourier Transform

Short-time Fourier transforms (STFTs) represent the frequency content of

a long signal by a sequence of shorter DFTs.

x[n]

n

N

N

N

Window 0

Window 1

Window 2

• Each DFT is computed for a time interval of length N .

• Successive time intervals begin at increasingly later times.

Short-Time Fourier Transform

Each window highlights frequencies from a different part of time.()shorttime

fourier transforms represent the signal DFT

x[n]

n

N

N

N

Window 0

Window 1

Window 2

Window 0 highlights the frequency of the first tone.

Window 1 contains contributions from the first two tones.

Window 2 ...

Short-Time Fourier Transform

View the results as a sequence of DFTs: one every 0.03 seconds.

This representation illustrates both frequency and time – clearly represent-

ing an increase in tone frequency with time.

But this representation as video is neither compact nor easy to work with.

Spectrogram

A spectrogram displays the successive DFT magnitudes as columns in a

two-dimensional representation.

x[n]

n

N

N

N

Window 0

Window 1

Window 2

|D
F

T
0
|

|D
F

T
1
|

|D
F

T
2
|

|D
F

T
3
|

|D
F

T
4
|

|D
F

T
5
|

|D
F

T
6
|

|D
F

T
7
|

|D
F

T
8
|

Time

F
re

q
u

e
n

c
y

Spectrogram

The following images show spectrograms for the previous tone sequences.

Large magnitudes are shown in bright green, small magnitudes are shown

in dark blue.

Version 1 clearly represents a sequence of tones with increasing frequency,

while version 2 represents a sequence with decreasing frequency.

Example 2: Music Clip

This plot shows the magnitudes of DFT coefficients for a clip of music.

Can you identify the piece?

Spectrogram

The spectrogram shows three parts: bass, melody, and harmony.

Structure is similar to that of musical score.

This score was created from the spectrogram using Lilypond (GNU project).

Example 3: Spectrograms in Telephony

In early telephone systems (circa 1880) clients were connected manually

through a switchboard.

The first automated systems (circa 1900) used pulses from a rotary dial to

route calls via complicated systems of relays.

Dual Tone Multi Frequency Signaling

In the 1950s, Bell Labs pioneered a system to route phone calls using

tones.

This method is still in use today, especially as a way to collecting data:

“Please enter your 16-digit account number followed by the # key.”

Dual Tone Multi Frequency Signaling

In the 1950s, Bell Labs pioneered a system to route phone calls using

tones.

Pressing a button transmits two frequencies: one representing the row

number and one representing the column number (the last column is rarely

used today).

Decoding the sequence of tones requires recognizing those two frequencies.

Spectrogram

Here is a spectrogram for the previous signal.

column 3
column 2
column 1

row 4
row 3
row 2
row 1

0 6 9 6 6 7 5 3 5 6

It clearly shows a sequence of frequency pairs.

Spectrogram

Here is a spectrogram for the previous signal.

column 3
column 2
column 1

row 4
row 3
row 2
row 1

0 6 9 6 6 7 5 3 5 6

The upper trace corresponds to the columns and the lower trace corre-

sponds to the rows.

Spectrogram

Here is a spectrogram for the previous signal.

column 3
column 2
column 1

row 4
row 3
row 2
row 1

0 6 9 6 6 7 5 3 5 6

1 2 3

4 5 6

7 8 9

* 0 #

The pair uniquely identifies the pushbutton number.

Check Yourself

Choosing parameters for a spectrogram.

Determine values of N that can be used to construct a spectrogram

to separate musical notes based on DFT analysis of a recording at

44,100 samples/sec.

Errors in frequency should be less than or equal to 5 Hz, so that we

can resolve middle C (261.63 Hz) from C# (277.18 Hz).

Frequencies should be computed separately for 1/8 second windows,

so that we can tell if two notes are sounding together or separately.

What DFT analysis length N will work best?

1. N > 4410
2. N < 4410
3. N < 5512
4. 4410 < N < 5512
5. none of the above

Resolving Time and Frequency

The time window is divided into N samples numbered n = 0 to N−1.

[] time

0 1 N−1 N n [samples]

0 1
fs

N−1
fs

N
fs

t [seconds]

Discrete frequencies are similarly numbered as k = 0 to N−1.

[] frequency

0 1 N−1 N k

0 2π
N 2π Ω [rad/sample]

0 fs
N

fs f [Hz]

N determines both the length of the window in time and the frequency

resolution of the result.

Check Yourself

Choosing parameters for a spectrogram.

To make frequency errors less than 5 Hz, we need to analyze frequencies

into bins of 10 Hz width, or smaller.

A DFT breaks the full range of frequencies (44,100 Hz) into N bins, so

the bin width is 44,100/N, and this bin width should be less than 10 Hz.

So N ≥ 4410.

A DFT breaks time into chunks of length N∆ = N/fs. To keep the

chunks smaller than 1/8 second, N/fs < 1/8 so N should be less than

44100/8=5512.

So N should be between 4410 and 5512.

Check Yourself

Choosing parameters for a spectrogram.

Determine values of N that can be used to construct a spectrogram

to separate musical notes based on DFT analysis of a recording at

44,100 samples/sec.

Errors in frequency should be less than or equal to 5 Hz, so that we

can resolve middle C (261.63 Hz) from C# (277.18 Hz).

Frequencies should be computed separately for 1/8 second windows,

so that we can tell if two notes are sounding together or separately.

What DFT analysis length N will work best? 4

1. N > 4410
2. N < 4410
3. N < 5512
4. 4410 < N < 5512
5. none of the above

Short-Time Fourier Transforms

Short-Time Fourier transforms are useful for constructing spectrograms,

to visualize the frequency content of a signal as a function of time.

– convert important information into a single picture, process as image.

– next week, we will look at how spectrograms are used in analyzing speech.

Short-Time Fourier transforms are also useful for processing long signals,

such as those that are common in streaming applications.

Example

Consider a musical piece that contains three simultaneous “voices,” each

playing a single sinusoidal tone (lab 6):

Voice 1 (bass): 40-170 Hz

Voice 2 (melody): 170-340 Hz

Voice 3 (harmony): 340-750 Hz

f

|X(f)|

b
a

ss

m
e
lo

d
y

h
a
rm

o
n

y

We would like to remove the bass and harmony voices, leaving just melody.

f

|H(f)|

Example

Consider a musical piece that contains three simultaneous “voices,” each

playing a single sinusoidal tone (lab 8):

f

|X(f)|

b
a

ss

m
e
lo

d
y

h
a
rm

o
n

y

We would like to remove the bass and harmony voices, leaving just melody.

f

|H(f)|

The straightforward approach is to filter the DFT of the piece, passing

only the frequencies of interest. This straightforward approach requires

accessing the entire piece before any part is ready to play. This approach

is problematic for streaming applications.

Streaming Algorithm 1

Divide a signal x[n] into a sequence of shorter signals of length N .

x[n]

n

N

N

N

Window 0

Window 1

Window 2

Filter data in each window by computing its DFT and zeroing components

outside passband.

f

|H(f)|

Assemble results for each window to form the output signal.

How Effective is Algorithm 1?

Divide a signal x[n] into a sequence of shorter signals of length N .

x[n]

n

N

N

N

Window 0

Window 1

Window 2

Compare the original:

• am_resynth.wav

with a version that is processed one window at a time:

• am_algorithm1.wav

It isolated the melody, but also added clicks!

Streaming Algorithm 1

There are at least two major problems with this approach.x[n]
x[n]

n

N

N

N

Window 0

Window 1

Window 2

Can you identify the problems?

Streaming Algorithm 1

There are at least two major problems with this approach.x[n]
x[n]

n

N

N

N

Window 0

Window 1

Window 2

• The length of (x ∗ h)[n] is generally > length of x[n] or h[n].
Part of result from each window should fall into an adjacent window(s).

• Even worse, the convolution will be circular if implemented with a DFT.

Results from window 1 that should fall into window 2 will alias back to

the beginning of window 1!

Overlap-Add Method

Avoid circular convolution artifacts and spill over problems by filling each

window with just s < N input samples and then zero-padding.

x[n]

n

N

N

N

Window 0

Window 1

Window 2s

s

If the length of h[n] ≤ N−s + 1, then the length of h[n] convolved with s

samples of the input will be less than N → no circular convolution artifact.

If the length of h[n] ≤ N−s+ 1, then the overlapping portions of adjacent

windows will accomodate spill over between windows.

Overlap-Add: Graphical Depiction

Convolve a square pulse with a signal that is 1 for all n.

n
h[n]

n
x[n]

Divide the input x[n] into pieces that are each of length s.

n
x0[n]

n
x1[n]

n
x2[n]

s 2s 3s
Convolve each piece of x[n] with h[n].

n
y0[n]

N
n

y1[n]
N

s N N
n

y2[n]

Then the output y[n] = y0[n] + y1[n] + y2[n] + · · · Hence overlap-add.

Filter Design

Design a filter to isolate the melody using the overlap-add method.

k

H[k]

−N/2 −kl kl−kh kh N/2

The filter should pass frequencies in the range fl ≤ f ≤ fh.

kl = fl
fs
N ; kh = fh

fs
N

If we take the window length N = 8192, then h[n] has that same length.

n

h[n]

0 N−1

This design leads to algorithm 1, and explains the clicking artifacts.

But the idea was to have a shorter h[n] to prevent inter-window artifacts.

Filter Design

How can we design a filter with 2048 points in time (n) but 8192 points in

frequency (k)?

• Start by designing a filter H1[k] with length Nf = 2048. The filter should

only pass frequencies in the range fl ≤ f ≤ fh.

• Convert H1[k] to the time domain using an inverse DFT. The length

of the resulting h1[n] will be Nf = 2048.

• Define a new filter h2[n] which is a version of h1[n] that is zero-padded

to a new length of N = 8192.

• Convert h2[n] to the frequency domain to get H2[k].

The filter H2[k] will have 8192 values of k but its time-domain representation

h2[n] will have just 2048 non-zero values.

Filter Design

Design a bandpass filter to extract 170-340 Hz frequency region from signal

sampled with fs = 44, 100 Hz with Nf = 2048.

170
fs
×Nf ≈ 8 ≤ k ≤ 340

fs
×Nf ≈ 16

k

H1[k]

−Nf/2 0 Nf/2

32

k (expanded scale)

H1[k]

−128 −16 16 128

n

h1[n]

−Nf/2 Nf/2

Filter Design

Zero-pad to make filter length equal to window length N = 8192.()

n

h2[n]

0 Nf N

k

|H2[k]|

−N/2 0 N/2

k (expanded scale)

|H2[k]|

−128 0 128−32 32−64 64

Listen to result: am_filtered.wav

Filter Design

Zero-pad to make filter length equal to window length N = 8192.()

n

h2[n]

0 Nf N

k

|H2[k]|

−N/2 0 N/2

k (expanded scale)

|H2[k]|

−128 0 128−32 32−64 64

Listen to result: am_filtered.wav Significant improvement. No clicks.

Filter Design

Zero-pad to make filter length equal to window length N = 8192.()

n

h2[n]

0 Nf N

k

|H2[k]|

−N/2 0 N/2

k (expanded scale)

|H2[k]|

−128 0 128−32 32−64 64

Listen to result: am_filtered.wav Significant improvement. No clicks.

Bass and harmony are faintly audible – probably because of deviations from

ideal filters. Ripples are due to Gibb’s phenomenon.

Gibb’s Phenomenon

Ripples in frequency result from windowing in time.

A rectangular window in time

wr[n] =
{

1 if 0 ≤ n < N

0 otherwise

corresponds to a DT sinc in frequency.

Wr(Ω) =
∞∑

n=−∞
w[n]e−jΩn =

N−1∑
n=0

e−jΩn = 1− e−jΩN

1− e−jΩ =
sin ΩN

2
sin Ω

2
e−jΩ

(N−1)
2

n

wr[n]
dft=⇒

Ω

|Wr(Ω)|

0 π−π

Multiplying the unit sample response h[n] by a window function, convolves

the desired bandpass shape with the DT sinc – generating ripples.

Gibb’s Phenomenon

Triangular windows in time produce smaller ripples in frequency.

A triangular window in time

wt[n] = wr[n] ∗ wr[n]

corresponds to a DT sinc squared in frequency.

Wt(Ω) = W 2
r (Ω)

n

wt[n]
dft=⇒

Ω

|Wt(Ω)|

0 π−π

n

wr[n]
dft=⇒

Ω

|Wr(Ω)|

0 π−π

Filter Design

We can reduce the passband ripple by applying a triangular window (red).

n

h2[n]

0 Nf N

k

H2[k]

−N/2 0 N/2

k (expanded scale)

H2[k]

−128 0 128−32 32−64 64

Filter Design

We can reduce the passband ripple by applying a triangular window.()

n

h2[n]

0 Nf N

k

H2[k]

−N/2 0 N/2

k (expanded scale)

H2[k]

−128 0 128−32 32−64 64

H2[k] is now a smoother function of k, rippling is greatly reduced.

Listen to result: am_triangular.wav

Filter Design

We can reduce the passband ripple by applying a triangular window.()

n

h2[n]

0 Nf N

k

H2[k]

−N/2 0 N/2

k (expanded scale)

H2[k]

−128 0 128−32 32−64 64

H2[k] is now a smoother function of k, rippling is greatly reduced.

Listen to result: am_triangular.wav Bass and harmony are still faintly

audible (although not as audible as for rectangular window).

Gibb’s Phenomenon

Ripples in frequency result from windowing in time.

A Hann window in time

wh[n] = sin
(πn
N

)2

produces even smaller ripples.

n

wh[n]
dft=⇒

Ω

|Wh(Ω)|

0 π−π

n

wt[n]
dft=⇒

Ω
0 π−π

n

wr[n]
dft=⇒

Ω
0 π−π

Filter Design

Better yet, try a Hann window (red).

n

h2[n]

0 Nf N

n

h2[n]

0 Nf N

k

H2[k]

−N/2 0 N/2

k (expanded scale)

H2[k]

−128 0 128−32 32−64 64

Filter Design

Better yet, try a Hann window.()

n

h2[n]

0 Nf N

k

H2[k]

−N/2 0 N/2

k (expanded scale)

H2[k]

−128 0 128−32 32−64 64

H2[k] is now even smoother.

Listen to result: am_Hann.wav

Filter Design

Better yet, try a Hann window.()

n

h2[n]

0 Nf N

k

H2[k]

−N/2 0 N/2

k (expanded scale)

H2[k]

−128 0 128−32 32−64 64

H2[k] is now even smoother.

Listen to result: am_Hann.wav Bass and harmony no longer audible.

Summary

A key feature of the DFT is that it can be applied to parts of a signal

• to visualize the change in frequency with time, and/or

• to process long signals, one chunk at a time.

Question of the Day

A spectrogram displays successive DFT magnitudes as columns in a two-

dimensional representation.

x[n]

n

N

N

N

Window 0

Window 1

Window 2

|D
F

T
0
|

|D
F

T
1
|

|D
F

T
2
|

|D
F

T
3
|

|D
F

T
4
|

|D
F

T
5
|

|D
F

T
6
|

|D
F

T
7
|

|D
F

T
8
|

Time

F
re

q
u

e
n

c
y

How would doubling the length of the analysis window N affect the resulting

spectrogram?

