6.300: Signal Processing

Quiz Review

e Quiz #2 is in Walker (50-340) on Tuesday, 04/15 at 2:00 p.m.

e You may bring two 8.5” x 11” double-sided pages of notes.

e The review during class on Thursday, 04/10 will emphasize
problem-solving strategies. Look over these slides on your own.

Slides by Titus K. Roesler (tkr@mit.edu)
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The Story So Far

Discrete Fourier Transform

03/18 Discrete Fourier Transform

03/20 DFT: Frequency Resolution and Circular Convolution
04/01 Short-Time Fourier Transforms

04/03 Fast Fourier Transform (FFT)

Applications and Extensions

04/08 Communications Systems
04/10 Quiz Review
04/15 Quiz #2

(There are many more applications and extensions yet to come.)



Calculus Analogy

You wouldn’t want to walk into a calculus quiz without knowing
dsin(6)
de

by heart, right? Going back to the derivation wastes precious time!

= cos(6)

sin(6 + ¢) — sin(6)

lim
$—0 10)
lim sin(0) cos(¢) + sin(¢) cos(#) — sin(0)
$—0 )
. sin(¢) . cos(¢) — 17 .
(})12% [—¢ ] cos(f) + (})li% [—d’ ] sin(0)
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Calculus Analogy

To do well on a calculus quiz,
you probably need to know at least a few things by heart.

common functions and their derivatives

Ay e ) dsingd)
dt dt dt

= cos(t)

differentiation rules

dfenf(t) + cag(t)] _ . dg(f(t)) dg df

dt agt dt dt  df dt




Calculus Analogy

To do well on a signal processing quiz,
you probably need to know at least a few things by heart.

common signals and their Fourier transforms

8[n —ng| == e IN" = 27§((Q — Qo) mod 27)

Fourier properties
c1T [’I’L] + CQTQ[’IL] <~ Cle(Q) + CQXQ(Q)
z[n —ny] <= e X(Q)
eI 0ngn] —= X(Q - Q)




Fourier Transforms (CT)

time domain <= frequency domain
i(t) <=1
6(t — ty) < e Ivh
1 < 276(w)

et = 216(w — wp)

Duality: Notice the common trend in transform pairs.
z(t) <= X(w)
X(t) < 2mz(—w)




Fourier Transforms (DT)

All discrete-time Fourier transforms are 27-periodic.

time domain <= frequency domain
i[n] <1
6[n — ny| <= e
1 < 276(Qmod 2m)
eI s 2m6((Q2 — Q) mod 27)

Duality: Not so easy with discrete-time Fourier transforms.
z[n] is discrete in time, but X () is continuous in frequency!




Some Fourier Properties

time domain <= frequency domain
ann] + enn] <= aXi(Q)+ X2(NQ)
(71 % 12)[n] <= X1(Q)X2(R)
7 [n])1z[n] = %(X]_*XQ)(Q)
z[—n] <= X(-Q)
z[n —ng] <= e X(Q)
e’ nzln] = X(Q— Q)
nzn] <= j5X(Q)
4a() > jwX(©)




Check Yourself

Determine the Fourier transforms of the signals listed below.
(Apply Fourier properties to reduce the number of calculations.)

(a) m(t) = e”"u(?)

(b) zy(t) = e

(c) z3(t) = 2e 1t cos(2)

(d) z4(t) = 4e~ 1 cos?(t)




Linearity and Time-Invariance

Linearity

i -+
o] - -+l
czi[n] + cam[n] — — ayi[n] + coyz[n]

Time-Invariance

z[n] — ‘ time-invariant system ‘ — y[n]

z[n — no| — ‘ time-invariant system ‘ — y[n — ng]




Check Yourself

Are the following systems linear and time-invariant?
(Recall: Together, additivity and homogeneity imply linearity.)

y[n] = 5z[n—1]+3z[n]+ sz[n+1]

y[n] = M.’E[n] + B for constants M and B




LTI Systems

Three representations for LTI systems:

e difference equation (DT) or differential equation (CT)
e unit-sample response (DT) or impulse response (CT)
e frequency response



LTI Systems

Three representations for LTI systems:

e difference equation (DT) or differential equation (CT)
e unit-sample response (DT) or impulse response (CT)
e frequency response

Difference Equations and Differential Equations
Impose time-domain constraints on the input and output.

y[n] = gy[n — 1] + z[n]

W) — aft) ~ (e




LTI Systems

Three representations for LTI systems:

e difference equation (DT) or differential equation (CT)
e unit-sample response (DT) or impulse response (CT)
e frequency response

Unit-Sample Response
Characterize a system by a single time-domain signal.

d[n] — LTI — h[n]
z[n| — LTI — Ekjh[k]x[n — k]




Convolution

Convolving z[n] with d[n — ng] time-shifts z[n].
hin] = é[n — ng] = (z * h)[n] = z[n — n)

Convolving z[n] with a sum of scaled and time-shifted ¢ signals
produces a sum of scaled and time-shifted z[n].

bln] = 32 hlHon —

(z * h)[n] =§k:£[/k_lw[n—k]

scale time-shift




Convolution

(z x h)[n] is a superposition of scaled and time-shifted z[n].

(z * h)[n] = h[0] z[n] +
h[l] z[n — 1] +
h[2] z[n — 2] +




Convolution is Commutative

(z x h)[n] is a superposition of scaled and time-shifted h[n].

(z % h)[n| = xO

z[2

| |
1k

x.

n] +
n—1] +

n— 2| +




Convolution

5] 6] [7]

o] 1] [2] [3] [4]

n

= (o] 1] [2] [3] [4] [5] [6] [7]

1
0
0

= [1] [3] [e] [6] [5] [3] o] [of

h[0] z[n — 0]

h[1] z[n — 1]

h[2] z[n — 2]

(z x h)[n]




Check Yourself

Consider an LTI system with unit-sample response h[n].

h[n] = §[n] + d[n — 1] + 6[n — 2]

Suppose that the input to the system is z[n].

z[n] = cos(¥'n)

Determine a closed-form expression for the output y[n].



LTI Systems

Three representations for LTI systems:

e difference equation (DT) or differential equation (CT)
e unit-sample response (DT) or impulse response (CT)
e frequency response

Frequency Response
Complex exponentials are eigenfunctions of LTT systems!
Characterize a system by how it shapes a signal’s spectrum.

/" — [LTI — H(Q)e"
X(Q) — LTI —» H(Q)X(Q)




Eigenfunctions g youre imterested)

An eigenvalue-eigenvector pair (A, v) satisfy the eigenequation.

Av =)\

Likewise, eigenvalue-eigenfunction pairs satisfy eigenequations.

%{e’\t} =M R{AT =TI

right shift

Exponential functions e*! are eigenfunctions of the d/dt operator.

eigenvalues A = jw = Eigenfunctions are CTFT basis functions!

Geometric sequences A" are eigenfunctions of the R (shift) operator.
eigenvalues A = e/ — Eigenfunctions are DTFT basis functions!



Eigenfunctions g youre imterested)

Let P(A) denote a polynomial in A. P(A) has the same
eigenvectors v, but the corresponding eigenvalues are P(\).

P(A)v=P\)v

P(4)eM = P(A)eM

P(R)A" = P(A™HA"

Expressing a signal in a basis of eigenfunctions facilitates analysis.

(e.g., The homogeneous solution to a linear differential equation with constant coefficients is a linear
combination of eigenfunctions that lie in the null space of the polynomial differential operator.)



Eigenfunctions g youre imterested)

How do we interpret Az = b?

® express & = y_; C;Vy in basis spanned by eigenvectors of A
e scale each eigenvector vy by the eigenvalue A
e b= Z k ck)\k'vk

How do we interpret z[n| — — y[n] ?

e express z[n] = 5= [, X(Q)e"dQ in eigenfunction basis
e scale each eigenfunction /" by the eigenvalue H(Q)
o y[n] =5 [,, Y(Q)eI"dQ = 5 [, H(Q)X(Q)e"dQ




Check Yourself

Consider an LTI system with unit-sample response h[n].

h[n] = (3)"u[n] + (3)"uln]

Suppose that the input to the system is z[n].

oln] = (~1)"

Determine a closed-form expression for the output y[n].



Signals and Systems

y(t)
mass &
spring —>
system
o(t

hl(t)l
r1(t) ro(t) ra(t)
hm)‘[‘ ‘ t = s;:tne% "
ro(t)

sound in

sound out

K Q) e

system

(Graphic: Denny Freeman)



Signals and Systems

Example: Mass on a Spring

(Graphic: Denny Freeman)



Signals and Systems

Example: Mass on a Spring
e signals: position z(t) and position y(t)
e parameters: mass M and spring constant K

TV K(a(t) - o(1)

Y(w w? K
H(w):XEw;:wg—Ow2 woz\/;

M

cos(wt) — — |H(w)] cos(wt + £ H(w))

very responsive to sinusoidal oscillations at w ~ wy




Signals and Systems

Example: Series RLC Circuit

R L +

(Graphic: Denny Freeman)



Signals and Systems

Example: Series RLC Circuit
e signals: input voltage v;(t) and output voltage v,(t)
e parameters: resistance R, inductance L, and capacitance C

d?v,(t) 1 dvo( )
CW = z(vz(t) - vo(t))
Vo(w) _ wg

H(w) =

&‘

Vilw) wg + Ljw — w?

cos(wt) — — |H(w)| cos(wt + ZH(w))

damped harmonic oscillator




Signals and Systems

Example: Phosphorylation Cycle

V4 Ir 1
Input ’ §
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(Biomolecular Feedback Systems, D. Del Vecchio and R. M. Murray)



Signals and Systems

Example: Phosphorylation Cycle
e signals: kinase z(t) and phosphorylated substrate y(t)
e parameters: production rate 8 and decay rate

WO _ palt) —yu(t) = jw¥ () = BX() ~ 1Y ()
Y B
H@) = %@ = 7+ 7w
= —ﬂ w) = —tan~! hd
@) = oy CHE) = (%)

low-pass filter: unresponsive to rapidly-varying stimuli




Check Yourself

Difference Equation — Unit-Sample Response

Determine the unit-sample response h[n| for the following linear
constant-coefficient difference equation. Assume that the system is
initially at rest: For n < 0, z[n| = y[n] = 0.

y[n] = gy[n — 1] + z[n]




Check Yourself

Frequency Response — Unit-Sample Response

Determine the unit-sample response h[n| corresponding to the
frequency response H ().

1 e—jQQ
H®) = 1— Je 9 = se~I0




Check Yourself

Frequency Response — Difference Equation

Determine a linear difference equation with constant coefficients
with frequency response H ().

1 e 20

= = T+ .
1—2e72  1— e i®

H(Q)




Check Yourself

Differential Equation — Impulse Response

Determine the impulse response h(t) for the following linear
ordinary differential equation with constant coefficients. Assume
that the system is initially at rest: For ¢ < 0, z(t) = y(¢) = 0.

WY _ o) - 3wt




Check Yourself

Frequency Response — Differential Equation

Determine a linear ordinary differential equation with constant
coefficients with frequency response H(w).

1 —jw

Hw) = 1 —4w?




LTI Systems

Three representations for LTI systems:

e difference equation (DT) or differential equation (CT)
e unit-sample response (DT) or impulse response (CT)
e frequency response



Communications Systems

Amplitude Modulation
2(t) = [AM] - y(t) = 2(t) cos(w.t)

Is an amplitude modulator a linear system?
Is an amplitude modulator a time-invariant system?



Communications Systems

Amplitude Modulation

Transmission: Multiply z(¢) by sinusoidal carrier signal c(t) and
transmit the amplitude-modulated signal y(t) = z(¢)c(t).

Reception: Recover z(t) from the amplitude-modulated signal
y(t) by multiplying by the carrier ¢(¢) and then low-pass filtering.

c(t) = cos(wt) = Fei! + LeIwet
y(t) = a(t)c(t) = Y(w) = %(X % C)(w)
Y(w) = %X(w —we) + 3 X (w +WC)J

copies of X(w) shifted outward by we




Communications Systems

Examine a finite-length window of the signal y[n] = z[n] cos(Q.n).

amplitude

magnitude

frequency



More Modulation

We examined amplitude modulation in class. Perhaps you’ve heard
of frequency modulation (FM) or phase modulation (PM) — but
you don’t need to know these for the quiz, per se.

Sinusoidal Modulation

y(t) = Acos(wt + @)

e amplitude (AM) time-varying amplitude A = A(t)
e frequency (FM) time-varying frequency w = w(t)
e phase (PM) time-varying phase ¢ = ¢(t)

Communications: Match the signal to the channel medium
by encoding the message in the carrier signal.




The Summary So Far

Fourier transform pairs and properties

linearity and time-invariance

difference equations (DT) and differential equations (CT)
unit-sample response (DT) and impulse response (CT)
frequency response

convolution and filtering

modulation and communications systems



Question of the Day #1

Consider the unit-sample response h[n].
n n
A =2(3) ulnl +5(}) uln]

Suppose we want to express the frequency response in the form

Ay + A
1—pe 11— pyei®

HQ) =

where Ay, As, p1, and py are constants.

Determine values for A, Aa, p1, and po.

Next: Discrete Fourier Transform




Discrete Fourier Transform

Quotes

‘After this class, | infend to type "fft" when | need to, and try to forget the rest.'

Even if all you do after this class is type

ffe(.--)

once in a while, you better know what you’re doing!

“DFT? What’s that? You mean, FFT?”

“What’s with all these non-zero frequencies?”

“Zero-padding gives me arbitrarily-good frequency resolution.”
“The FFT only works if the signal length N is a power of 2.”




DT Fourier Representations

The DTFS is for periodic signals. No real-world periodic signals!
e finite summation over n (infinite-length periodic signals)
e frequency variable &k of discrete domain

The DTFT may only be computed in theory.
e infinite summation over n (infinite-length aperiodic signals)
e frequency variable Q of continuous domain

The DFT can be computed in practice.
e finite summation over n (finite-length aperiodic signals)
e frequency variable k of discrete domain

The FFT refers to a family of algorithms for computing the DFT.

The STFT is a “moving-window Fourier transform.”
e For practical computation, use the DFT.



Discrete Fourier Transform

The DFT is a discrete-time, discrete-frequency Fourier transform.

e finite-length signals Ty[n] = z[n]w(n]
e discrete in time (n) N time-samples
e discrete in frequency (k) N frequency-samples

Discrete Fourier Transform

]. N-1 .27
X[k] = I 2—:0 z[n]e#¥"  analysis

N-1 +7, 270
z[n] = Y X[k]eHwn synthesis
k=0




Discrete Fourier Transform

DFT vs. Discrete-Time Fourier Series (DTFS)

The length-N DF'T is equivalent to the discrete-time Fourier series
of an N-periodic extension of the windowed signal z,,[n] = z[n|w[n].

1 N-1 +7. 2
3" z,[nmod N]e *n"

X[k] = N =

DFT vs. Discrete-Time Fourier Transform (DTFT)

X[k = % Xu(55F)

DFT frequency resolution: fﬁ hertz or ZWW radians




Relation Between DFT and DTFT
Graphical depiction of relation between DFT and DTFT.

X ()

DFT
—_—
_N 0 N
2 2
A
i sample: Q — %
window scale: 1/N
Xu(Q)

e DTFT J\/W&/L

an v...."... .' ...'. Q - I Q

0 7T

0 N-1
While sampling and scaling are important, it is the windowing that most
affects frequency content.

(Graphic: Denny Freeman)



Window Functions

Multiplying z[n] by the window function w[n] corresponds to
convolving the DTFT of z[n] with the DTFT of wn].

Windowing
zu[n] = z[njwln] <= X,(Q) = 5-(X * W)(Q)

long time-domain w[n] <= narrow frequency-domain W (<)

There are many window functions.

SciPy: Bartlett, Bartlett-Hann, Blackman, Blackman-Harris,
Bohman, box-car, cosine, discrete prolate spheroidal sequences,
Dolph-Chebyshev, exponential, flat-top, Gaussian, generalized
Hamming, Hamming, Hann, Kaiser, Kaiser-Bessel, Lanczos, Nutall,
Parzen, Taylor, triangular, Tukey, ...



Window Functions

rectangular window Bartlett window Hann window
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The window to use depends on the task at hand.
e What’s most important? Narrow mainlobe? Low sidelobes?



Window Functions

rectangular window

Hann window
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DFT: Circular Convolution

Multiplication of N-point DFTs in the frequency domain
corresponds to circular convolution in the time domain.

(z ® )[n] = N DFT, X[k Hx[K]}

N-1
= Z w[m]h[(n — m) mod N]
m=0

Circular convolution seems complicated, but it is really simple.
You do need to know how to do regular convolution, though.

Circular Convolution

e Compute the regular (non-circular) convolution.
e Wrap the result into a length-N interval.

e Periodically extend this length-N interval.




Circular Convolution

n = [0 2] [3] [4] 6]
gnh) = 1 1 1 1 0 0 0 0
hn] = 1 2 3 0 0 0 0 0

= [0 [1 [2 B 4[5 6
(zxh)n] = 1 3 6 6 5 3 0 0
(z@h)gln)] = 1 3 6 6 5 3 1 3
(z@h)sn] = 4 3 6 6 5 4 3 6
(z®hjgln] = 6 6 6 6 6 6 6 6




Check Yourself

Suppose that z[n] = 0 and A[n] =0 for n ¢ {0,1,2,3,...,9}.

yln] = DTFT{X(Q)H(Q)}  2[n] = DFT; {X (k) H(¥K)}
(z@® h)[n]

(@*h)[n]

n [o] [1] [2] [3] [4] [5] [6] [7] [8] [9]
0O A B C D E

1 4 3 14 13 1

yln] 4 3 T 7
zln] 4 3 14 13

Determine appropriate values for the constants A, B, C, D, and E.
Give a few choices of z[n| and h[n] that produce y[n].



Short-Time Fourier Transforms

Think of short-time Fourier transforms as “moving-window Fourier
transforms.” We analyze how a signal’s spectrum changes over time.

Any Fourier transform can be a short-time Fourier transform.

Short-Time CTFT: X(w,7) = / z(t) w(t —7) e ¥t dt
— 0 —_————
window
Short-Time DTFT: X(Q, m] = Z z[n] w[n — m] e~
n=Tee window

Window Functions

z,[n] = z[n|w[n] <= X,(Q) = (X * W)(Q)

— or




Spectrograms

Examine the (magnitude)? of a signal’s time-varying spectrum.

Mel-frequency spectrogram

+0dB

8192

-10dB

-20dB

4096

-30dB

-40dB

-50dB

1024

-60 dB.

i

-80dB.

i
o
0:00

(spectrogram of “Les Patineurs” performed on Hammond organ)



Overlap-Add Method

How can we process long signals block-by-block? Divide the input
z[n] into blocks — each of length s. Convolve each block with h[n].

SO w— .
riln] — .
el . 1
yo[n] n
y1[n] N n
. N
yeln ! T T T n
s N N

The output is y[n] = yo[n] + v1[n] + y2[n] + - - - Hence overlap-add.
(Graphic: Denny Freeman)



Fast Fourier Transform (FFT)

Gauss, circa 1805: “..truly, that method greatly reduces the
tediousness of mechanical calculations ...”

Radix-2 Decimation-in-Time Algorithm
e Split a length-N DFT into a sum of two length-(N/2) DFTs.
1 even k yvodd
Xn[k] = §(XN/2 k] + WNXN/2[k])

21
Wy = € 7N (N™ root of unity, or “twiddle factor”)

e Repeat (1) until N/2 = 1, when we can’t divide by 2 anymore.
e The DFT of a length-1 signal is the signal itself: X[0] = z[0].
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(Graphic: Denny Freeman)



Summary

Fourier transform pairs and properties

linearity and time-invariance

difference equations (DT) and differential equations (CT)
unit-sample response (DT) and impulse response (CT)
frequency response

convolution and filtering

modulation and communications systems

discrete Fourier transform (DFT)

window functions

circular convolution

short-time Fourier transforms

fast Fourier transform (FFT)



“Signals and Systems” Subjects

You may be interested in the following subjects.
(These certainly aren’t the only “signals and systems” subjects!)

6.200 Electrical Circuits: Modeling and Design (U)

6.300 Signal Processing (U)

6.301  Signals, Systems, and Inference (U)

6.302 Fundamentals of Music Processing (U/G)

6.310 Dynamical System Modeling and Control Design (U/G)
6.430 Introduction to Computer Vision (U)

6.480 Biomedical Systems: Modeling and Inference (U)

6.700 Discrete-Time Signal Processing (G)

6.741 Principles of Digital Communication (U/G)

6.880 Biomedical Signal and Image Processing (U/G)

6.862 Spoken Language Processing (U/G)

6.C27 Computational Imaging: Physics and Algorithms (U/G)



Question of the Day #2

Describe how the discrete Fourier transform is related to
e the discrete-time Fourier series and
e the discrete-time Fourier transform.

Why do we care about the discrete Fourier transform, anyway?
(No participation credit if you say, “Nobody cares.”)

Discrete Fourier Transform

1 N1 .21
X[k] = v E_:O z[n]e*¥™  analysis

N-1 e
z[n] = 3 X[k]eHwn synthesis
k=0




