
6.300: Signal Processing
Quiz Review
• Quiz #2 is in Walker (50-340) on Tuesday, 04/15 at 2:00 p.m.
• You may bring two 8.5”× 11” double-sided pages of notes.
• The review during class on Thursday, 04/10 will emphasize
• problem-solving strategies. Look over these slides on your own.

Slides by Titus K. Roesler (tkr@mit.edu)



The Story So Far
Signals
02/04 Signal Processing
02/06 Fourier Series (Sinusoids)
02/11 Fourier Series (Exponentials)
02/13 Discretization (Sampling and Quantization)
02/20 Discrete-Time Fourier Series
02/25 Continuous-Time Fourier Transform
02/27 Discrete-Time Fourier Transform
03/04 Quiz #1

Systems
03/06 Systems
03/11 Impulse Response and Convolution
03/13 Frequency Response and Filtering



The Story So Far
Discrete Fourier Transform
03/18 Discrete Fourier Transform
03/20 DFT: Frequency Resolution and Circular Convolution
04/01 Short-Time Fourier Transforms
04/03 Fast Fourier Transform (FFT)

Applications and Extensions
04/08 Communications Systems
04/10 Quiz Review
04/15 Quiz #2
(There are many more applications and extensions yet to come.)



Calculus Analogy
You wouldn’t want to walk into a calculus quiz without knowing

d sin(θ)
dθ = cos(θ)

by heart, right? Going back to the derivation wastes precious time!

lim
φ→0

sin(θ + φ)− sin(θ)
φ

lim
φ→0

sin(θ) cos(φ) + sin(φ) cos(θ)− sin(θ)
φ

lim
φ→0

[sin(φ)
φ

]
︸ ︷︷ ︸
1 as φ→ 0

cos(θ) + lim
φ→0

[cos(φ)− 1
φ

]
︸ ︷︷ ︸

0 as φ→ 0

sin(θ)



Calculus Analogy
To do well on a calculus quiz,
you probably need to know at least a few things by heart.

common functions and their derivatives

d(tn)
dt = ntn−1 d

(
eλt

)
dt = λeλt d sin(t)

dt = cos(t)

differentiation rules

d
[
c1f (t) + c2g(t)

]
dt = c1

df
dt + c2

dg
dt

dg
(
f (t)

)
dt = dg

df · dfdt



Calculus Analogy
To do well on a signal processing quiz,
you probably need to know at least a few things by heart.

common signals and their Fourier transforms

δ[n − n0] ⇐⇒ e−jΩn0 e jΩ0n ⇐⇒ 2πδ
(
(Ω− Ω0)mod 2π

)
Fourier properties

c1x1[n] + c2x2[n] ⇐⇒ c1X1(Ω) + c2X2(Ω)
x[n − n0] ⇐⇒ e−jΩn0X(Ω)
e jΩ0nx[n] ⇐⇒ X(Ω− Ω0)



Fourier Transforms (CT)

time domain ⇐⇒ frequency domain
δ(t) ⇐⇒ 1

δ(t − t0) ⇐⇒ e−jωt0

1 ⇐⇒ 2πδ(ω)
e jω0t ⇐⇒ 2πδ(ω − ω0)

Duality: Notice the common trend in transform pairs.

x(t) ⇐⇒ X(ω)
X(t) ⇐⇒ 2πx(−ω)



Fourier Transforms (DT)
All discrete-time Fourier transforms are 2π-periodic.

time domain ⇐⇒ frequency domain
δ[n] ⇐⇒ 1

δ[n − n0] ⇐⇒ e−jΩn0

1 ⇐⇒ 2πδ(Ωmod 2π)
e jΩ0n ⇐⇒ 2πδ

(
(Ω− Ω0)mod 2π

)

Duality: Not so easy with discrete-time Fourier transforms.
x[n] is discrete in time, but X(Ω) is continuous in frequency!



Some Fourier Properties

time domain ⇐⇒ frequency domain
c1x1[n] + c2x2[n] ⇐⇒ c1X1(Ω) + c2X2(Ω)

(x1 ∗ x2)[n] ⇐⇒ X1(Ω)X2(Ω)
x1[n]x2[n] ⇐⇒ 1

2π

(
X1 ∗ X2

)
(Ω)

x [−n] ⇐⇒ X(−Ω)
x [nM ] ⇐⇒ X( Ω

M )
x [n − n0] ⇐⇒ e−jΩn0X(Ω)
e jΩ0nx [n] ⇐⇒ X(Ω− Ω0)

n x [n] ⇐⇒ j d
dΩX(Ω)

d
dt x(t) ⇐⇒ jωX(ω)



Check Yourself
Determine the Fourier transforms of the signals listed below.
(Apply Fourier properties to reduce the number of calculations.)

(a) x1(t) = e−tu(t)

(b) x2(t) = e−|t|

(c) x3(t) = 2e−|t| cos(t)

(d) x4(t) = 4e−|t| cos2(t)



Linearity and Time-Invariance

Linearity
x1[n] → linear system → y1[n]

x2[n] → linear system → y2[n]

c1x1[n] + c2x2[n] → linear system → c1y1[n] + c2y2[n]

Time-Invariance

x[n] → time-invariant system → y[n]

x[n − n0] → time-invariant system → y[n − n0]



Check Yourself
Are the following systems linear and time-invariant?
(Recall: Together, additivity and homogeneity imply linearity.)

y[n] = 1
3x [n−1]+ 1

3x [n]+
1
3x [n+1]

y[n] = Mx [n] + B for constantsM andB

y(t) =
ˆ t

0
x(τ )dτ



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response

Difference Equations and Differential Equations
Impose time-domain constraints on the input and output.

y[n] = 1
2y[n − 1] + x [n]

dy(t)
dt = x(t)− 1

2y(t)



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response

Unit-Sample Response
Characterize a system by a single time-domain signal.

δ[n] → LTI → h[n]
x [n] → LTI → ∑

k
h[k]x [n − k]



Convolution

Convolving x[n] with δ[n − n0] time-shifts x[n].

h[n] = δ[n − n0] =⇒ (x ∗ h)[n] = x [n − n0]

Convolving x[n] with a sum of scaled and time-shifted δ signals
produces a sum of scaled and time-shifted x[n].

h[n] =
∑
k
h[k]δ[n − k]

(x ∗ h)[n] =
∑
k
h[k]︸ ︷︷ ︸
scale

x [n − k]︸ ︷︷ ︸
time-shift



Convolution

(x ∗ h)[n] is a superposition of scaled and time-shifted x[n].

...
(x ∗ h)[n] = h[0] x [n] +

h[1] x [n − 1] +
h[2] x [n − 2] +
...



Convolution is Commutative

(x ∗ h)[n] is a superposition of scaled and time-shifted h[n].

...
(x ∗ h)[n] = x [0] h[n] +

x [1] h[n − 1] +
x [2] h[n − 2] +
...



Convolution

n = 0 1 2 3 4 5 6 7

x[n] = 1 1 1 1 0 0 0 0

h[n] = 1 2 3 0 0 0 0 0

n = 0 1 2 3 4 5 6 7

h[0] x[n − 0] = 1 1 1 1 0 0 0 0

h[1] x[n − 1] = 0 2 2 2 2 0 0 0

h[2] x[n − 2] = 0 0 3 3 3 3 0 0

(x ∗ h)[n] = 1 3 6 6 5 3 0 0



Check Yourself
Consider an LTI system with unit-sample response h[n].

h[n] = δ[n] + δ[n − 1] + δ[n − 2]
Suppose that the input to the system is x[n].

x [n] = cos
(2π
3 n

)

Determine a closed-form expression for the output y[n].



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response

Frequency Response
Complex exponentials are eigenfunctions of LTI systems!
Characterize a system by how it shapes a signal’s spectrum.

e jΩn → LTI → H (Ω)e jΩn

X (Ω) → LTI → H (Ω)X (Ω)



Eigenfunctions (if you’re interested)

An eigenvalue-eigenvector pair (λ, v) satisfy the eigenequation.

Av = λv
Likewise, eigenvalue-eigenfunction pairs satisfy eigenequations.

d
dt

{
eλt

}
= λeλt R

{
λn}

︸ ︷︷ ︸
right shift

= λ−1λn

Exponential functions eλt are eigenfunctions of the d/dt operator.
eigenvalues λ = jω =⇒ Eigenfunctions are CTFT basis functions!

Geometric sequences λn are eigenfunctions of the R (shift) operator.
eigenvalues λ = e jΩ =⇒ Eigenfunctions are DTFT basis functions!



Eigenfunctions (if you’re interested)

Let P(A) denote a polynomial in A. P(A) has the same
eigenvectors vk , but the corresponding eigenvalues are P(λk).

P(A)v = P(λ)v
Likewise . . .

P
 d
dt

eλt = P(λ)eλt

P(R)λn = P(λ−1)λn

Expressing a signal in a basis of eigenfunctions facilitates analysis.
(e.g., The homogeneous solution to a linear differential equation with constant coefficients is a linear
combination of eigenfunctions that lie in the null space of the polynomial differential operator.)



Eigenfunctions (if you’re interested)

How do we interpret Ax = b?

• express x =
∑

k ckvk in basis spanned by eigenvectors of A
• scale each eigenvector vk by the eigenvalue λk
• b =

∑
k ckλkvk

How do we interpret x[n] → LTI → y[n] ?

• express x[n] = 1
2π
´
2π X(Ω)e jΩndΩ in eigenfunction basis

• scale each eigenfunction e jΩn by the eigenvalue H (Ω)
• y[n] = 1

2π
´
2π Y (Ω)e jΩndΩ = 1

2π
´
2π H (Ω)X(Ω)e jΩndΩ



Check Yourself
Consider an LTI system with unit-sample response h[n].

h[n] = (12)
nu[n] + (13)

nu[n]
Suppose that the input to the system is x[n].

x [n] = (−1)n

Determine a closed-form expression for the output y[n].



Signals and Systems

(Graphic: Denny Freeman)



Signals and Systems
Example: Mass on a Spring

(Graphic: Denny Freeman)



Signals and Systems
Example: Mass on a Spring
• signals: position x(t) and position y(t)
• parameters: mass M and spring constant K

M d2y(t)
dt2 = K

(
x(t)− y(t)

)
H (ω) = Y (ω)

X(ω) =
ω2
0

ω2
0 − ω2 ω0 =

√
K
M

cos(ωt) → LTI → |H (ω)| cos
(
ωt + ∠H (ω)

)
very responsive to sinusoidal oscillations at ω ≈ ω0



Signals and Systems
Example: Series RLC Circuit

(Graphic: Denny Freeman)



Signals and Systems
Example: Series RLC Circuit
• signals: input voltage vi(t) and output voltage vo(t)
• parameters: resistance R, inductance L, and capacitance C

C d2vo(t)
dt2 = 1

L
(
vi(t)− RC dvo(t)

dt − vo(t)
)

H (ω) = Vo(ω)
Vi(ω)

=
ω2
0

ω2
0 +

1
τ jω − ω2 ω0 =

√
1
LC τ = L

R

cos(ωt) → LTI → |H (ω)| cos
(
ωt + ∠H (ω)

)
damped harmonic oscillator



Signals and Systems
Example: Phosphorylation Cycle

(Biomolecular Feedback Systems, D. Del Vecchio and R. M. Murray)



Signals and Systems
Example: Phosphorylation Cycle
• signals: kinase x(t) and phosphorylated substrate y(t)
• parameters: production rate β and decay rate γ

dy(t)
dt = βx(t)− γy(t) ⇐⇒ jωY (ω) = βX(ω)− γY (ω)

H (ω) = Y (ω)
X(ω) = β

γ + jω∣∣H (ω)
∣∣ = β√

γ2 + ω2
∠H (ω) = − tan−1

(
ω

γ

)

low-pass filter: unresponsive to rapidly-varying stimuli



Check Yourself
Difference Equation → Unit-Sample Response
Determine the unit-sample response h[n] for the following linear
constant-coefficient difference equation. Assume that the system is
initially at rest: For n < 0, x[n] = y[n] = 0.

y[n] = 1
2y[n − 1] + x [n]



Check Yourself
Frequency Response → Unit-Sample Response
Determine the unit-sample response h[n] corresponding to the
frequency response H (Ω).

H (Ω) = 1
1− 1

2e−jΩ + e−j2Ω

1− 1
3e−jΩ



Check Yourself
Frequency Response → Difference Equation
Determine a linear difference equation with constant coefficients
with frequency response H (Ω).

H (Ω) = 1
1− 1

2e−jΩ + e−j2Ω

1− 1
3e−jΩ



Check Yourself
Differential Equation → Impulse Response
Determine the impulse response h(t) for the following linear
ordinary differential equation with constant coefficients. Assume
that the system is initially at rest: For t < 0, x(t) = y(t) = 0.

dy(t)
dt = x(t)− 1

2y(t)



Check Yourself
Frequency Response → Differential Equation
Determine a linear ordinary differential equation with constant
coefficients with frequency response H (ω).

H (ω) = 1− jω
1− 4ω2



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response



Communications Systems
Amplitude Modulation

x(t) → AM → y(t) = x(t) cos(ωct)
Is an amplitude modulator a linear system?
Is an amplitude modulator a time-invariant system?



Communications Systems
Amplitude Modulation
Transmission: Multiply x(t) by sinusoidal carrier signal c(t) and
transmit the amplitude-modulated signal y(t) = x(t)c(t).
Reception: Recover x(t) from the amplitude-modulated signal
y(t) by multiplying by the carrier c(t) and then low-pass filtering.

c(t) = cos(ωct) = 1
2e

jωct + 1
2e

−jωct

y(t) = x(t)c(t) ⇐⇒ Y (ω) = 1
2π

(
X ∗ C

)
(ω)

Y (ω) = 1
2X(ω − ωc) + 1

2X(ω + ωc)︸ ︷︷ ︸
copies of X(ω) shifted outward by ωc



Communications Systems
Examine a finite-length window of the signal y[n] = x[n] cos(Ωcn).



More Modulation
We examined amplitude modulation in class. Perhaps you’ve heard
of frequency modulation (FM) or phase modulation (PM) — but
you don’t need to know these for the quiz, per se.

Sinusoidal Modulation

y(t) = A cos(ωt + φ)
• amplitude (AM) time-varying amplitude A = A(t)
• frequency (FM) time-varying frequency ω = ω(t)
• phase (PM) time-varying phase φ = φ(t)

Communications: Match the signal to the channel medium
by encoding the message in the carrier signal.



The Summary So Far
• Fourier transform pairs and properties
• linearity and time-invariance
• difference equations (DT) and differential equations (CT)
• unit-sample response (DT) and impulse response (CT)
• frequency response
• convolution and filtering
• modulation and communications systems



Question of the Day #1
Consider the unit-sample response h[n].

h[n] = 2
(
1
3

)n
u[n] + 5

(
1
7

)n
u[n]

Suppose we want to express the frequency response in the form

H (Ω) = A1
1− p1e−jΩ + A2

1− p2e−jΩ

where A1, A2, p1, and p2 are constants.
Determine values for A1, A2, p1, and p2.

Next: Discrete Fourier Transform



Discrete Fourier Transform

Even if all you do after this class is type

fft(· · · )
once in a while, you better know what you’re doing!
• “DFT? What’s that? You mean, FFT?”
• “What’s with all these non-zero frequencies?”
• “Zero-padding gives me arbitrarily-good frequency resolution.”
• “The FFT only works if the signal length N is a power of 2.”



DT Fourier Representations
The DTFS is for periodic signals. No real-world periodic signals!
• finite summation over n (infinite-length periodic signals)
• frequency variable k of discrete domain

The DTFT may only be computed in theory.
• infinite summation over n (infinite-length aperiodic signals)
• frequency variable Ω of continuous domain

The DFT can be computed in practice.
• finite summation over n (finite-length aperiodic signals)
• frequency variable k of discrete domain

The FFT refers to a family of algorithms for computing the DFT.

The STFT is a “moving-window Fourier transform.”
• For practical computation, use the DFT.



Discrete Fourier Transform
The DFT is a discrete-time, discrete-frequency Fourier transform.
• finite-length signals xw [n] = x[n]w[n]
• discrete in time (n) N time-samples
• discrete in frequency (k) N frequency-samples

Discrete Fourier Transform

X [k] = 1
N

N−1∑
n=0

x [n]e−jk 2π
N n analysis

x [n] =
N−1∑
k=0

X [k]e jk 2π
N n synthesis



Discrete Fourier Transform
DFT vs. Discrete-Time Fourier Series (DTFS)
The length-N DFT is equivalent to the discrete-time Fourier series
of an N -periodic extension of the windowed signal xw [n] = x[n]w[n].

X [k] = 1
N

N−1∑
n=0

xw[nmodN ]e−jk 2π
N n

DFT vs. Discrete-Time Fourier Transform (DTFT)

X [k] = 1
NXw

(2π
N k

)
DFT frequency resolution: fs

N hertz or 2π
N radians



(Graphic: Denny Freeman)



Window Functions
Multiplying x[n] by the window function w[n] corresponds to
convolving the DTFT of x[n] with the DTFT of w[n].

Windowing

xw[n] = x [n]w[n] ⇐⇒ Xw(Ω) = 1
2π

(
X ∗W

)
(Ω)

long time-domain w[n] ⇐⇒ narrow frequency-domain W (Ω)

There are many window functions.
SciPy: Bartlett, Bartlett-Hann, Blackman, Blackman-Harris,
Bohman, box-car, cosine, discrete prolate spheroidal sequences,
Dolph-Chebyshev, exponential, flat-top, Gaussian, generalized
Hamming, Hamming, Hann, Kaiser, Kaiser-Bessel, Lanczos, Nutall,
Parzen, Taylor, triangular, Tukey, . . .



Window Functions

The window to use depends on the task at hand.
• What’s most important? Narrow mainlobe? Low sidelobes?



Window Functions



DFT: Circular Convolution
Multiplication of N -point DFTs in the frequency domain
corresponds to circular convolution in the time domain.

(x ~ h)[n] = N DFT−1
N {XN [k]HN [k]}

=
N−1∑
m=0

x[m]h
[
(n −m)modN

]
Circular convolution seems complicated, but it is really simple.
You do need to know how to do regular convolution, though.

Circular Convolution
• Compute the regular (non-circular) convolution.
• Wrap the result into a length-N interval.
• Periodically extend this length-N interval.



Circular Convolution

n = 0 1 2 3 4 5 6 7

x[n] = 1 1 1 1 0 0 0 0

h[n] = 1 2 3 0 0 0 0 0

n = 0 1 2 3 4 5 6 7

(x ∗ h)[n] = 1 3 6 6 5 3 0 0

(x ~ h)6[n] = 1 3 6 6 5 3 1 3

(x ~ h)5[n] = 4 3 6 6 5 4 3 6

(x ~ h)4[n] = 6 6 6 6 6 6 6 6



Check Yourself
Suppose that x[n] = 0 and h[n] = 0 for n /∈ {0, 1, 2, 3, . . . , 9}.

y[n] = DTFT−1{X(Ω)H (Ω)
}︸ ︷︷ ︸

(x ∗ h)[n]

z[n] = DFT−1
5

{
X
(2π

5 k
)
H
(2π

5 k
)}︸ ︷︷ ︸

(x ~ h)[n]

n 0 1 2 3 4 5 6 7 8 9

y[n] 4 3 7 7 0 A B C D E

z[n] 4 3 14 13 1 4 3 14 13 1

Determine appropriate values for the constants A, B, C , D, and E .
Give a few choices of x[n] and h[n] that produce y[n].



Short-Time Fourier Transforms
Think of short-time Fourier transforms as “moving-window Fourier
transforms.” We analyze how a signal’s spectrum changes over time.

Any Fourier transform can be a short-time Fourier transform.

Short-Time CTFT: X(ω, τ) =
ˆ ∞

−∞
x(t)w(t − τ)︸ ︷︷ ︸

window

e−jωtdt

Short-Time DTFT: X(Ω,m] =
∞∑

n=−∞
x[n]w[n −m]︸ ︷︷ ︸

window

e−jΩn

Window Functions

xw[n] = x [n]w[n] ⇐⇒ Xw(Ω) = 1
2π

(
X ∗W

)
(Ω)



Spectrograms
Examine the (magnitude)2 of a signal’s time-varying spectrum.

(spectrogram of “Les Patineurs” performed on Hammond organ)



Overlap-Add Method
How can we process long signals block-by-block? Divide the input
x[n] into blocks — each of length s. Convolve each block with h[n].

The output is y[n] = y0[n] + y1[n] + y2[n] + · · · Hence overlap-add.
(Graphic: Denny Freeman)



Fast Fourier Transform (FFT)
Gauss, circa 1805: “. . . truly, that method greatly reduces the
tediousness of mechanical calculations . . . ”

Radix-2 Decimation-in-Time Algorithm
• Split a length-N DFT into a sum of two length-(N/2) DFTs.

XN [k] = 1
2

(
X even

N/2 [k] +W k
NX odd

N/2[k]
)

WN = e−j 2πN (N th root of unity, or “twiddle factor”)

• Repeat (↑) until N/2 = 1, when we can’t divide by 2 anymore.
• The DFT of a length-1 signal is the signal itself: X [0] = x[0].



FFT: Decimation in Time

(Graphic: Denny Freeman)



Summary
• Fourier transform pairs and properties
• linearity and time-invariance
• difference equations (DT) and differential equations (CT)
• unit-sample response (DT) and impulse response (CT)
• frequency response
• convolution and filtering
• modulation and communications systems
• discrete Fourier transform (DFT)
• window functions
• circular convolution
• short-time Fourier transforms
• fast Fourier transform (FFT)



“Signals and Systems” Subjects

You may be interested in the following subjects.
(These certainly aren’t the only “signals and systems” subjects!)
6.200 Electrical Circuits: Modeling and Design (U)
6.300 Signal Processing (U)
6.301 Signals, Systems, and Inference (U)
6.302 Fundamentals of Music Processing (U/G)
6.310 Dynamical System Modeling and Control Design (U/G)
6.430 Introduction to Computer Vision (U)
6.480 Biomedical Systems: Modeling and Inference (U)
6.700 Discrete-Time Signal Processing (G)
6.741 Principles of Digital Communication (U/G)
6.880 Biomedical Signal and Image Processing (U/G)
6.862 Spoken Language Processing (U/G)
6.C27 Computational Imaging: Physics and Algorithms (U/G)



Question of the Day #2
Describe how the discrete Fourier transform is related to
• the discrete-time Fourier series and
• the discrete-time Fourier transform.
Why do we care about the discrete Fourier transform, anyway?
(No participation credit if you say, “Nobody cares.”)

Discrete Fourier Transform

X [k] = 1
N

N−1∑
n=0

x [n]e−jk 2π
N n analysis

x [n] =
N−1∑
k=0

X [k]e jk 2π
N n synthesis


