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Filtering

If a system is linear and time invariant, then its response to any input is

the convolution of that input with the unit-sample response of the system.

h[nx, ny]x[nx, ny] (x∗h)[nx, ny]

Convolution = Superposition: it follows directly from LTI.

Convolution can be implemented in the frequency domain → filtering.

Filtering follows directly from properties of the Fourier Transform.

x[nx, ny] dtft=⇒ X(Ωx,Ωy)

h[nx, ny] dtft=⇒ H(Ωx,Ωy)
(h ∗ x)[nx, ny] dtft=⇒ H(Ωx,Ωy)X(Ωx,Ωy)}

Using the DFT speeds computation (but makes convolution “circular”).

x[nx, ny] dft=⇒ X[kx, ky]

h[nx, ny] dft=⇒ H[kx, ky] }
1

NxNy
(h©∗ x)[nx, ny] dft=⇒ H[kx, ky]X[kx, ky]

Today: applications of 2D filtering



2D Filtering

Low-pass filtering: removing high frequencies from an image.

The most straightforward approach is to take the Fourier transform, zero

out the high-frequency components, and then inverse transform.



2D Filtering

Transform, zero out the high-frequency components, and inverse transform.

from lib6003.fft import fft2,ifft2
from lib6003.image import png_read,show_image

f = png_read(’bluegill.png’)
R,C = f.shape

F = fft2(f)
for kr in range(-R//2,R//2):

for kc in range(-C//2,C//2):
if (kr**2+kc**2)**0.5 > 25:

F[kr,kc] = 0

filtered = ifft2(F)
show_image(filtered)



2D Filtering

Transform, zero out the high-frequency components, and inverse transform.

original filtered

Is this what we expected?



2D Filtering

Zeroing out frequency components is equivalent to filtering:

HL[kr, kc] =
{

1 if
√
k2

r + k2
c ≤ 25

0 otherwise

f = png_read(’bluegill.png’)
R,C = f.shape
F = fft2(f)

HL = numpy.zeros((R,C),dtype=complex)
for kr in range(-R//2,R//2):

for kc in range(-C//2,C//2):
if (kr**2+kc**2)**0.5 <= 25:

HL[kr,kc] = 1

lowpassed = ifft2(F*HL)
show_image(lowpassed)



2D Filtering

We can view filtering as convolution in the space domain.

show_image(ifft2(HL))

Step changes in
∣∣∣HL[kr, kc]

∣∣∣→ overshoot in hL[r, c]: Gibb’s phenomenon.



2D Filtering

The ripples result from overshoot in the unit-sample response.

show_image(ifft2(F*HL))

How to avoid ripples?



2D Filtering

To reduce the ripples in space, we must limit the step discontinuities in the

transform. Try a Hann window.

HL2[kr, kc] =
{

1
2 + 1

2 cos
(
π ×

√
k2
r +k2

c
50

)
if
√
k2

r + k2
c ≤ 50

0 otherwise

HL2 = numpy.zeros((R,C),dtype=complex)
for kr in range(-R//2,R//2):

for kc in range(-C//2,C//2):
d = (kr**2+kc**2)**0.5
if d<=50:

HL2[kr,kc] = 0.5+0.5*cos(pi*d/50)

hanned = ifft2(F*HL2)
show_image(hanned)



2D Filtering

Ripples are gone.

Square Window Hann Window



2D Filtering

But the image is still blurry.

Original Hann Window

Why low-pass filter?



Reducing Noise

Effect of low-pass filtering of telescope image of night-time sky.



Removing Artifacts

Original high-resolution (5880x3920) image of Zakim Bridge.



Removing Artifacts

Why does downsampling generate artifacts? (Hann window, half-width =

150)
(1470x980) (735x490)

(368x245) (184x123)



Down-Sampling Artifacts

Down-sampling artifacts in images and music: similar mechanisms?

Image artifacts:

Music artifacts:

• fs = 44.1 kHz

• fs = 22 kHz

• fs = 11 kHz

• fs = 5.5 kHz

• fs = 2.8 kHz

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Sampling Artifacts

Aliasing occurs when samples (shown in blue) of two different frequencies

(green and red) are identical.

t

Each of these CT frequencies is an alias of the other.



Sampling Artifacts

Sampling introduces new frequencies ωo not in the signal being sampled./

ωo not in the signal being sampled.ωo > π/∆
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Each point on each of these blue lines represents a pair of frequencies ωi

and ωo that produce the same discrete-time samples when the sampling

interval is ∆.



Sampling Artifacts

Frequencies ωo > π/∆ can be removed by low-pass filtering after sampling.

ωo 6= ωi

ωi∆

ωo∆
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ωo > π/∆ = πfs

fo > fs/2



Sampling Artifacts

Even if we restrict the output to lie in the base band, harmonically related

input frequencies may give rise to inharmonic output frequencies.

ωi∆

ωo∆
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0
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3π

4π

Here, three harmonically related input frequencies at low frequencies give

rise to three harmonically related output frequencies.



Sampling Artifacts

Even if we restrict the output to lie in the base band, harmonically related

input frequencies may give rise to inharmonic output frequencies.

ωi∆

ωo∆
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4π

Higher input frequencies also produce harmonically related output frequen-

cies.



Sampling Artifacts

Even if we restrict the output to lie in the base band, harmonically related

input frequencies may give rise to inharmonic output frequencies. ωo 6= ωi
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Higher input frequencies also produce harmonically related output frequen-

cies.



Sampling Artifacts

Even if we restrict the output to lie in the base band, harmonically related

input frequencies may give rise to inharmonic output frequencies. ωo 6= ωi

ωi∆

ωo∆
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4π

Still higher input frequencies produce output frequencies that are not found

in the input.



Sampling Artifacts

Anti-aliasing refers to lowpass filtering the input before sampling to re-

move components that would alias to frequencies ωo 6= ωi.

ωi∆

ωo∆
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Still higher input frequencies produce output frequencies that are not found

in the input.



Anti-Aliasing

Sampling artifacts in music reduced by anti-aliasing (LPF before sampling).

• fs = 11 kHz without anti-aliasing

• fs = 11 kHz with anti-aliasing

• fs = 5.5 kHz without anti-aliasing

• fs = 5.5 kHz with anti-aliasing

• fs = 2.8 kHz without anti-aliasing

• fs = 2.8 kHz with anti-aliasing

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Down-Sampling and Aliasing

Can similar anti-aliasing techniques work for images?

(1470x980) (735x490)

(368x245) (184x123)



Aliasing in Images

While the results look different, the mechanisms underlying aliasing in music

and images are similar.

Start with an image with two (cyan) lines



Aliasing in Images

While the results look different, the mechanisms underlying aliasing in music

and images are similar.

Now sample uniformly with sampling interval ∆ horizontally and vertically.



Aliasing in Images

While the results look different, the mechanisms underlying aliasing in music

and images are similar.

The red boxes indicate pixels whose centers fall on the cyan lines.



Aliasing in Images

While the results look different, the mechanisms underlying aliasing in music

and images are similar.

Aliasing affects periodicity (arrows) in music and in images.

But aliasing drastically affects edges in images.

Will lowpass filtering before sampling help? Why? Why not?



Down-Sampling and Aliasing

Down-sampling after low-pass filtering (Hann window, half-width = 150).

(1470x980) (735x490)

(368x245) (184x123)



High-Pass Filtering

Use the same approach to implement a high-pass filter.

HH [kr, kc] = 1−HL[kr, kc] =
{

1 if
√
k2

r + k2
c > 25

0 otherwise

In the spatial domain, then, we have:

hH [r, c] = RCδ[r, c]− hL[r, c]



High-Pass Filtering

Not surprisingly, results show the same rippling effect seen in LPF. [



High-Pass Filtering

We can reduce the ringing artifacts by using 1−HL2[kr, kc] instead.



Why High-Pass Filter?



Who Is This?

Look at this image with your eyes about a foot away from the screen.

Then look again from a distance of six feet.

from Prof. Antonio Torralba



Filtering and Inverse Filtering

An important area of research in image processing is in inverse filtering

(also called deconvolution). The idea is to undo the effect of prior filtering.

h[r, c] hi[r, c]f [r, c]
g[r, c]

f̂ [r, c]

Example: enhancing images from a telescope.

• f [r, c]: unknown image of a distant galaxy and

• h[r, c]: effects of optics of the telescope (especially lowpass filtering)

Goal: design an inverse filter hi[r, c] so that f̂ [r, c] approximates f [r, c].



Inverse Filtering

One simple approach is to filter by the inverse of H[kr, kc].

h[r, c] hi[r, c]f [r, c]
g[r, c]

f̂ [r, c]

In the frequency domain:

F̂ [kr, kc] = Hi[kr, kc]×G[kr, kc] = Hi[kr, kc]× (H[kr, kc]× F [kr, kc])

If Hi[kr, kc]×H[kr, kc] = 1 then F̂ [kr, kc] = F [kr, kc]!

Letting Hi[kr, kc] = 1
H[kr, kc]

is called inverse filtering.

Quite remarkable that you can design a system to undo the effect of a prior

system. Think about how you might do “inverse convolution”!

But it’s simple (?) in the frequency domain.



Example: Motion Blur

Camera images are blurred by motion of the target.

The resulting motion blur can be modelled as the convolution.



Modelling Motion Blur

Assume that streaks in this image resulted from the blurring. There is an

isolated streak near the point r=120, c=250 (approximate 19x6 pixels).



Inverse Filtering

Make an image h to represent the presumed blurring function.

Let H represent the DFT of h, and filter the blurred image with 1
H .



Inverse Filtering

Here is the resulting inverse filtered image – not at all what we want.

What went wrong?



Inverse Filtering

This image shows the magnitude of H (DFT of blur function). 1
H .

What causes the bright spots? Why are they a problem?



Inverse Filtering

This image shows the magnitude of 1
H .

What causes the bright spots? Why are they a problem?



Deblurring

The bright spots in 1
H come from points in H with values near zero.

H G = 1
HX

Y
X̂

Such bright spots dominate the result. Try limiting their magnitudes.

Method 1:

Start with G = 1
H

, but limit the magnitude of every point in G to 4:

for kr in range(R):
for kc in range(C):

G[kr,kc] = 1/H[kr,kc]
if abs(G[kr,kc])>4:

G[kr,kc] *= 4/abs(G[kr,kc])



Deblurring

This deblurring filter works better: easy to read license number.

But there are many artifacts.



Deblurring

The form of the previous deblurring function is a bit arbitrary.

H G = 1
HX

Y
X̂

Method 2:

Here is a frequently used alternative (a “Weiner filter”):

G = 1
H

|H|2

|H|2 + C

where C = 0.004 (chosen by trial and error).



Deblurring

Alternative deblurring function.

But there are still artifacts.



Edge Effects

Much of the ringing results from circular convolution. Window edges in

original image to reduce step change due to periodic extension.



Edge Effects

Much of the ringing results from circular convolution. Window edges in

original image to reduce step change due to periodic extension.



Comparison

Method 1 with and without windowing.



Comparison

Method 2 with and without windowing.



Conclusions

In general, inverse filtering worked well. It allowed a clear view of the license

plate which was otherwise not legible.

Problems with inverse filtering. Inverting H[kr, kc] doesn’t work well

if H[kr, kc] is near zero. Fortunately, there were only a few such points.

Arbitrarily limiting the values of such points results in useful deblurring.

Problems with circular convolution. Circular convolution introduces

enormous artifacts if the left and right (or top and bottom) edges differ in

brightness. These artifacts can be reduced by windowing.

Remaining problems. The resulting images still suffer from ringing – pre-

sumeably because of sharp discontinuities in the frequency representation

of blurring.



Question of the Day

A continuous-time signal x(t) is passed through an anti-aliasing filter H1(ω)
to produce a new continuous-time signal y(t).

The new signal y(t) is sampled with sampling interval ∆ to produce a

discrete-time signal y[n] = y(n∆) where ∆ = 1 millisecond.

Then y[n] is passed through a low pass filter H2(Ω) to remove any aliased

components introduced by the sampling.

H1(ω) H2(Ω)x(t) z[n]
y(t) y[n]sampler

y[n] = y(n∆)

Determine cutoff frequencies ωL for H1(ω) and ΩL for H2(Ω) so that z[n]
preserves as many frequencies in x(t) as possible while removing any com-

ponents that would alias.


