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Last Time

Define the Discrete Fourier Transform (DFT).

Compare the DFT to other Fourier representations.
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Relation Between DFT and DTFS

The 64-point DFT of x2[n] = cos 3πn
64
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is equal to the 64-point DTFS of the periodic extension of x2[n].
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From this perspective, the large number of non-zero frequency components

in the DFT of x2 are needed to generate the step discontinuity at n = 64.



Relation Between DFT and DTFT

Graphical depiction of relation between DFT and DTFT.
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While sampling and scaling are important, it is the windowing that most

affects frequency content.



Relation Between DFT and DTFT

Decreasing the analysis window N decreases frequency resolution.
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Relation Between DFT and DTFT

Decreasing the analysis window N decreases frequency resolution.

N = 24
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Relation Between DFT and DTFT

Decreasing the analysis window N decreases frequency resolution.

N = 16
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Relation Between DFT and DTFT

Decreasing the analysis window N decreases frequency resolution.

N = 12
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Frequency Resolution

Frequency blurring is fundamental to the way the DFT works.

Longer windows provide finer frequency resolution.
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The width of the central lobe is inversely related to window length.



Length of Analysis Window N

The DFT provides a new parameter (N) to customize performance.

The time window is divided into N samples numbered n = 0 to N−1.

[ ] time

0 1 N−1 N n [samples]

0 1
fs

N−1
fs

N
fs

t [seconds]

Discrete frequencies are similarly numbered as k = 0 to N−1.

[ ] frequency

0 1 N−1 N k

0 2π
N 2π Ω [rad/sample]

0 fs
N

fs f [Hz]

N determines both the length of the window in time and the frequency

resolution of the result.



Length of Analysis Window N

The DFT provides a new parameter (N) to customize performance.

The time window is divided into N samples numbered n = 0 to N−1.

[ ] time

0 1 N−1 N n [samples]

0 1
fs

N−1
fs

N
fs

t [seconds]

Discrete frequencies are similarly numbered as k = 0 to N−1.

[ ] frequency

0 1 N−1 N k

0 2π
N 2π Ω [rad/sample]

0 fs
N

fs f [Hz]

Which is better: big or small values of N?



Frequency Resolution

Example: Determine the frequency content of the following sound.

cello: DEb3.wav (fs = 44, 100 Hz)



Frequency Resolution

Extract 1024 samples and calculate DFT.k

x1[n]
∣∣∣X1[k]

∣∣∣



Frequency Resolution

Information about pitch is at low frequencies. Zoom in on k = 0 to 24. k

x1[n]
∣∣∣X1[k]

∣∣∣



Check Yourself

The magnitude of the DFT is largest at k = 7 (fs = 44100 Hz).

x1[n]
∣∣∣X1[k]

∣∣∣

What is the corresponding frequency in Hz?

1. 293.66 Hz 2. 301.46 Hz

3. 146.83 Hz 4. 150.73 Hz

5. None of the above



Check Yourself

The magnitude of the DFT is largest at k = 7.

x1[n]
∣∣∣X1[k]

∣∣∣

What is the corresponding frequency in Hz?

Use proportional reasoning:

fo
fs

= ko
N



Length of Analysis Window N

The DFT provides a new parameter (N) to customize performance.

The time window is divided into N samples numbered n = 0 to N−1.

[ ] time

0 1 N−1 N n [samples]

0 1
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Discrete frequencies are similarly numbered as k = 0 to N−1.
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0 1 N−1 N k

0 2π
N 2π Ω [rad/sample]

0 fs
N

fs f [Hz]



Check Yourself

The magnitude of the DFT is largest at k = 7.

x1[n]
∣∣∣X1[k]

∣∣∣

What is the corresponding frequency in Hz?

Use proportional reasoning:

fo
fs

= ko
N
→ fo = ko

N
fs = 7

1024 × 44100 ≈ 301.46 Hz

This frequency is between D4 (293.66 Hz) and E-flat-4 (311.13 Hz).



Check Yourself

The magnitude of the DFT is largest at k = 7 (fs = 44100 Hz).

x1[n]
∣∣∣X1[k]

∣∣∣

What is the corresponding frequency in Hz? 2

1. 293.66 Hz 2. 301.46 Hz

3. 146.83 Hz 4. 150.73 Hz

5. None of the above



Frequency Resolution

Information about pitch is at low frequencies. Zoom in on k = 0 to 24.k

x1[n]
∣∣∣X1[k]

∣∣∣

The DFT provides integer resolution in k. Therefore, the peak at k = 7
could be off by as much as ±1

2 .

∆f = ∆k
N
fs = 1/2

1024 × 44100 ≈ 21.5 Hz

Thus the frequency of the biggest peak is 280 < fo < 323, easily including

both D (293.66 Hz) and E-flat (311.13 Hz).



Improving Frequency Resolution

We can increase N to increase the number of analyzed frequencies.

Two methods to increase N :

• zero-padding (add zeros to increase length of input)

• increase sample size



Zero Padding

Original (N=1024).

x1[n]
∣∣∣X1[k]

∣∣∣



Zero Padding

What happens if we increase the length of the signal by adding zeros?

x2[n]
∣∣∣2X2[k]

∣∣∣

X2[k]= 1
2N

2N−1∑
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x2[n]e−j
2πk
2N n= 1
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x1[n]e−j
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(
k
2
)
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=
{ 1

2X1[k/2] if k is even

new information if k is odd

Lengthening x1[n] with zeros stretches the DFT by inserting new coeffi-

cients of X2 between adjacent coefficients of X1.



Zero Padding

Lengthen by a factor of 4 (N=4096).

x3[n]
∣∣∣4X3[k]

∣∣∣



Zero Padding

Lengthen by a factor of 8 (N=8192).

x4[n]
∣∣∣8X4[k]

∣∣∣



Zero Padding

The stem plots can be distracting when they are close together. (They

also take a long time to compute!) Replot using lines (but remember that

the signals are DT).



Zero Padding

Original (N=1024).∣∣∣X1[k]
∣∣∣ ∣∣∣X1[k]

∣∣∣



Zero Padding

Lengthen by a factor of 2 (N=2048).∣∣∣2X2[k]
∣∣∣ ∣∣∣2X2[k]

∣∣∣



Zero Padding

Lengthen by a factor of 4 (N=4096).∣∣∣4X3[k]
∣∣∣ ∣∣∣4X3[k]

∣∣∣



Zero Padding

Lengthen by a factor of 8 (N=8192).∣∣∣8X4[k]
∣∣∣ ∣∣∣8X4[k]

∣∣∣

Peak is now at k = 55.

fo = ko
N
fs = 55

8× 102444100 ≈ 296 Hz

compared to our previous estimate of 301.46 Hz.

More importantly, frequencies are sampled more densely:

∆f = ∆k
N
fs = 1/2

8× 1024 × 44100 ≈ 2.7 Hz

But we still cannot tell if the note was D (293.66 Hz) or E-flat (311.13 Hz).



Check Yourself
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Which of the following is/are true?

1. Zero-padding has no effect on the DTFT of xw[n].
2. Zero-padding decreases spectral smear in the DTFT.

3. Zero-padding has no effect on the sampled version Xw(Ω).

4. Zero-padding decreases the frequency interval (Hz) of DFT samples.



Check Yourself
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Which of the following is/are true?

1. Zero-padding has no effect on the DTFT of xw[n].
√

2. Zero-padding decreases spectral smear in the DTFT of xw[n]. X

3. Zero-padding has no effect on the sampled version of Xw(Ω). X

4. Zero-padding decreases the frequency interval (Hz) of DFT samples.
√



More Data

In order to increase frequency resolution, we need to include more data.



More Data

Original (N=1024).

x5[n]
∣∣∣X5[k]

∣∣∣



More Data

Lengthen by a factor of 2 (N=2048).

x6[n]
∣∣∣2X6[k]

∣∣∣



More Data

Lengthen by a factor of 4 (N=4096).

x7[n]
∣∣∣4X7[k]

∣∣∣



More Data

Lengthen by a factor of 8 (N=8192).

x8[n]
∣∣∣8X8[k]

∣∣∣

Switching again to line plots ...



More Data

Original (N=1024).∣∣∣X5[k]
∣∣∣ ∣∣∣X5[k]

∣∣∣



More Data

Lengthen by a factor of 2 (N=2048).∣∣∣2X6[k]
∣∣∣ ∣∣∣2X6[k]

∣∣∣



More Data

Lengthen by a factor of 4 (N=4096).∣∣∣4X7[k]
∣∣∣ ∣∣∣4X7[k]

∣∣∣



More Data

Lengthen by a factor of 8 (N=8192).∣∣∣8X8[k]
∣∣∣ ∣∣∣8X8[k]

∣∣∣



More Data

Lengthen by a factor of 16 (N=16,384).∣∣∣16X9[k]
∣∣∣ ∣∣∣16X9[k]

∣∣∣



More Data

Lengthen by a factor of 32 (N=32,768).∣∣∣32X10[k]
∣∣∣ ∣∣∣32X10[k]

∣∣∣

Clear peaks at k = 217 and k = 228 (f = 292.04 Hz and f = 306.85 Hz).

→ close to D (293.66 Hz) and E-flat (311.13 Hz): both notes are present!

Anything else?



More Data

Lengthen by a factor of 32 (N=32,768).∣∣∣32X10[k]
∣∣∣ ∣∣∣32X10[k]

∣∣∣

Clear peaks at k = 217 and k = 228 (f = 292.04 Hz and f = 306.85 Hz).

→ close to D (293.66 Hz) and E-flat (311.13 Hz): both notes are present!

Notice that these are the second harmonics of lower frequencies.

→ an octave lower than was suggested by the analysis with N = 1024.

The fundamental components were not clearly resolved with N = 1024 but

are clear with N = 32,768.



Summary: Frequency Resolution

Increasing the length of the analysis by zero padding increases the number

of frequency points (because sampling is more dense) but does not in-

crease frequency resolution (because windowing is unchanged).

To increase frequency resolution we must increase the number of data that

are analyzed.



Implementing Convolution with DFT

In addition to being useful for characterizing the frequency content of a

signal, the DFT can also be used to implement convolution.

Recall the convolution result for the DTFT.

If

fa[n] dtft=⇒ Fa(Ω)
and

fb[n] dtft=⇒ Fb(Ω)
then

(fa ∗ fb)[n] dtft=⇒ Fa(Ω)Fb(Ω)



Implementing Convolution with DFT

In addition to being useful for characterizing the frequency content of a

signal, the DFT can also be used to implement convolution.

Recall the convolution result for the DTFT.

If

fa[n] dtft=⇒ Fa(Ω)
and

fb[n] dtft=⇒ Fb(Ω)
then

(fa ∗ fb)[n] dtft=⇒ Fa(Ω)Fb(Ω)

This property is the basis of the filtering view of a system:

fb[n]fa[n] (fa ∗ fb)[n]

Fb(Ω)Fa(Ω) Fa(Ω)Fb(Ω)



Regular Convolution

Why does multiplication in frequency correspond to convolution in time?

Let F (Ω) = Fa(Ω)× Fb(Ω). Find f [n].

f [n] = 1
2π

∫
2π
F (Ω)ejΩn dΩ

= 1
2π

∫
2π
Fa(Ω)Fb(Ω)ejΩn dΩ

= 1
2π

∫
2π
Fa(Ω)

( ∞∑
m=−∞

fb[m]e−jΩm
)
ejΩn dΩ

=
∞∑

m=−∞
fb[m] 1

2π

∫
2π
Fa(Ω)ejΩ(n−m) dΩ︸ ︷︷ ︸
fa[n−m]

=
∞∑

m=−∞
fb[m]fa[n−m] ≡ (fa∗fb)[n]

Multiplying in frequency is equivalent to convolving in time.



Implementing Convolution with DFT

The argument for the DFT is similar to the one for the DTFT.

Let F [k] = Fa[k]× Fb[k]. Find f [n].

f [n] =
N−1∑
k=0

F [k]ej
2πk
N

n =
N−1∑
k=0

Fa[k]Fb[k]ej
2πk
N

n

=
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( 1
N
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(
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2πk
N

(n−m)
)

︸ ︷︷ ︸
fa[n−m]?

No! fa[n] is only defined for 0≤n<N , but n−m can fall outside that range.



Implementing Convolution with DFT

The argument for the DFT is similar to the one for the DTFT.

Let F [k] = Fa[k]× Fb[k]. Find f [n].

f [n] =
N−1∑
k=0

F [k]ej
2πk
N

n =
N−1∑
k=0

Fa[k]Fb[k]ej
2πk
N

n

=
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( 1
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= 1
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(
N−1∑
k=0

Fa[k]ej
2πk
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(n−m)
)

︸ ︷︷ ︸
fa[(n−m) modN ]

Since k is integer, the complex exponential is periodic in n−m, period N .

Therefore the parenthesized expression is fa[(n−m) modN ], and

f [n] = 1
N

N−1∑
m=0

fb[m]fa[(n−m) modN ] ≡ 1
N

(fa©∗ fb)[n]



Implementing Convolution with DFT

Multiplfying DFTs is equivalent to circular convolution in time.

If

fa[n] dft=⇒ Fa[k]
and

fb[n] dft=⇒ Fb[k]
then

1
N

(fa©∗ fb)[n] dft=⇒ Fa[k]Fb[k]

where

(fa©∗ fb)[n] =
N−1∑
m=0

fb[m]fa[(n−m) modN ]



Superposition View of Conventional Convolution
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Superposition View of Circular Convolution (N=5)
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Side By Side

The parts of the conventional convolution that would fall outside the DFT

window “alias” to points inside the DFT window.
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Summary

Today we discussed two critical issues in using the DFT.

• Frequency resolution – how the length of a signal determines the ability

to discriminate frequencies using the DFT.

• Circular Convolution – how the DFT can be used to carry out time

domain operations.



Question of the Day

Determine the value of the following expression:(
δ[n−2]©∗

(
u[n−1]− u[n−4]

))
[2]

where the circular convolution has length N=5.


