6.3000: Signal Processing

Discrete Fourier Transform 2

- Frequency Resolution
- Circular Convolution

Last Time

Define the Discrete Fourier Transform (DFT).

Compare the DFT to other Fourier representations.

analysis

synthesis

$$X[k] = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j\frac{2\pi k}{N}n}$$

$$x[n] = \sum_{k \in \mathcal{N}} X[k]e^{j\frac{2\pi k}{N}n}$$

DTFT:
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

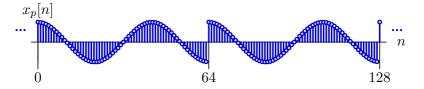
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$$

$$X[k] = \frac{1}{N} \sum_{n=1}^{N-1} x[n] e^{-j\frac{2\pi k}{N}n}$$

$$x[n] = \sum_{n = \langle N \rangle} X[k] e^{j\frac{2\pi k}{N}n}$$

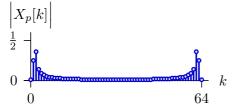
Relation Between DFT and DTFS

The 64-point DFT of $x_2[n] = \cos \frac{3\pi n}{64}$



is equal to the 64-point DTFS of the **periodic extension** of $x_2[n]$.

$$x_p[n] = x_2[n \operatorname{mod} 64]$$

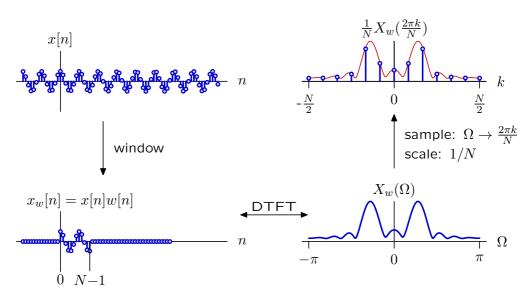


From this perspective, the large number of non-zero frequency components in the DFT of x_2 are needed to generate the step discontinuity at n=64.

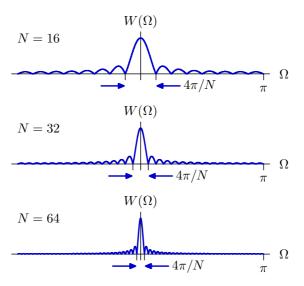
Relation Between DFT and DTFT

Decreasing the analysis window ${\cal N}$ decreases frequency resolution.

N = 12



Frequency blurring is fundamental to the way the DFT works. Longer windows provide finer frequency resolution.



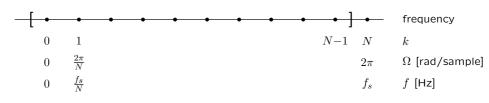
The width of the central lobe is inversely related to window length.

Length of Analysis Window N

The DFT provides a new parameter (N) to customize performance.

The time window is divided into N samples numbered n=0 to N-1.

Discrete frequencies are similarly numbered as k=0 to N-1.



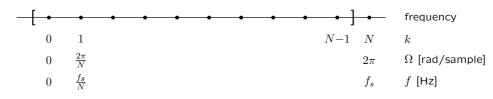
 ${\cal N}$ determines both the length of the window in time and the frequency resolution of the result.

Length of Analysis Window N

The DFT provides a new parameter (N) to customize performance.

The time window is divided into N samples numbered n=0 to N-1.

Discrete frequencies are similarly numbered as k = 0 to N-1.

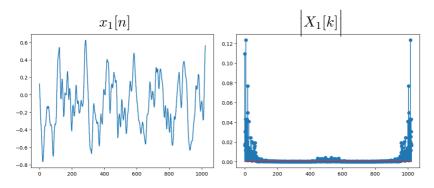


Which is better: big or small values of N?

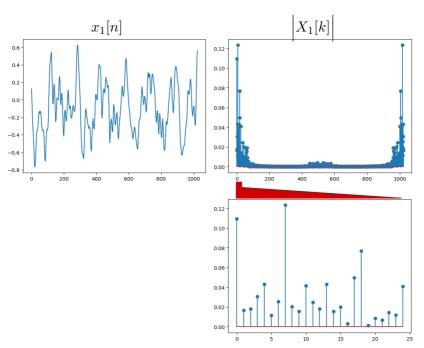
Example: Determine the frequency content of the following sound.

cello: DEb3.wav ($f_s = 44,100\,{\rm Hz}$)

Extract 1024 samples and calculate DFT.

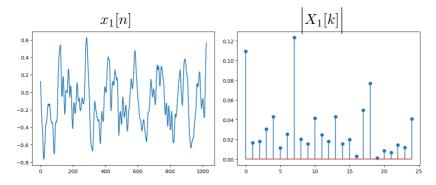


Information about pitch is at low frequencies. Zoom in on k=0 to 24.



Check Yourself

The magnitude of the DFT is largest at k=7 ($f_s=44100\,\mathrm{Hz}$).

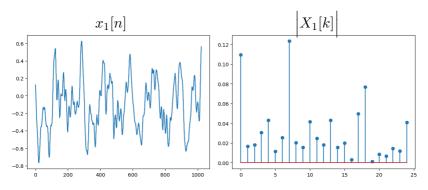


What is the corresponding frequency in Hz?

- 1. 293.66 Hz
- 3. 146.83 Hz

- 2. 301.46 Hz
- 4. 150.73 Hz
- 5. None of the above

Information about pitch is at low frequencies. Zoom in on k=0 to 24.



The DFT provides integer resolution in k. Therefore, the peak at k=7 could be off by as much as $\pm \frac{1}{2}$.

$$\Delta f = rac{\Delta k}{N} f_s = rac{1/2}{1024} imes 44100 pprox 21.5\,\mathrm{Hz}$$

Thus the frequency of the biggest peak is $280 < f_o < 323$, easily including both D (293.66 Hz) and E-flat (311.13 Hz).

Improving Frequency Resolution

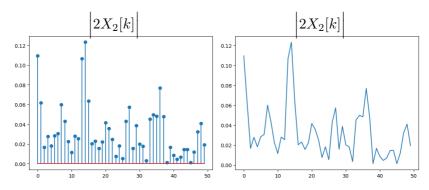
We can increase ${\cal N}$ to increase the number of analyzed frequencies.

Two methods to increase N:

- zero-padding (add zeros to increase length of input)
- increase sample size

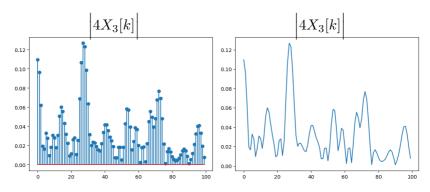
Zero Padding

Lengthen by a factor of 2 (N=2048).



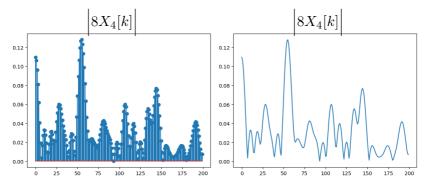
Zero Padding

Lengthen by a factor of 4 (N=4096).



Zero Padding

Lengthen by a factor of 8 (N=8192).



Peak is now at k = 55.

$$f_o = rac{k_o}{N} f_s = rac{55}{8 imes 1024} 44100 pprox 296 \, {
m Hz}$$

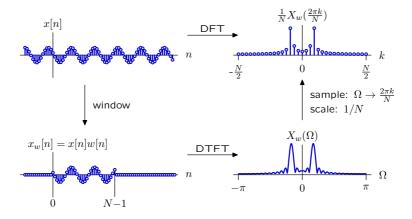
compared to our previous estimate of $301.46\,\mathrm{Hz}.$

More importantly, frequencies are sampled more densely:

$$\Delta f = \frac{\Delta k}{N} f_s = \frac{1/2}{8 \times 1024} \times 44100 \approx 2.7 \, \mathrm{Hz}$$

But we still cannot tell if the note was D (293.66 Hz) or E-flat (311.13 Hz).

Check Yourself

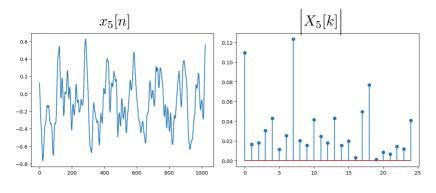


Which of the following is/are true?

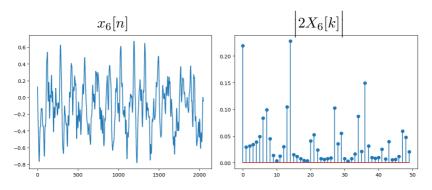
- 1. Zero-padding has no effect on the DTFT of $x_w[n]$.
- 2. Zero-padding decreases spectral smear in the DTFT.
- 3. Zero-padding has no effect on the sampled version $X_w(\Omega)$.
- 4. Zero-padding decreases the frequency interval (Hz) of DFT samples.

In order to increase **frequency resolution**, we need to include more data.

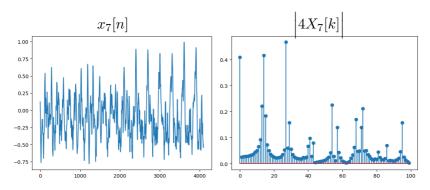
Original (N=1024).



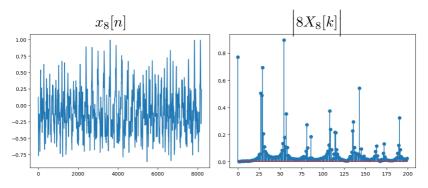
Lengthen by a factor of 2 (N=2048).



Lengthen by a factor of 4 (N=4096).

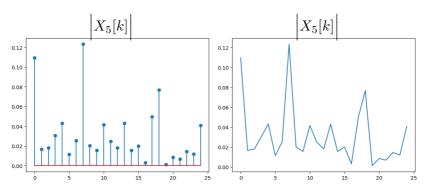


Lengthen by a factor of 8 (N=8192).

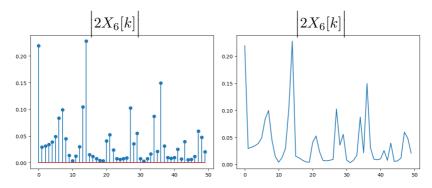


Switching again to line plots ...

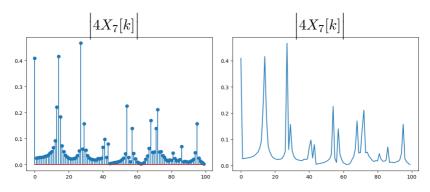
Original (N=1024).



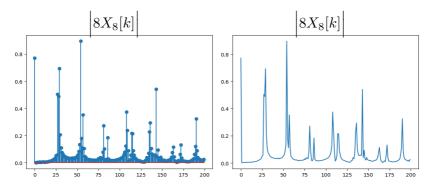
Lengthen by a factor of 2 (N=2048).



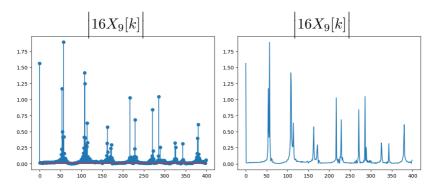
Lengthen by a factor of 4 (N=4096).



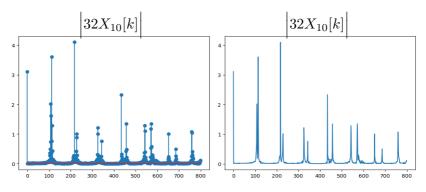
Lengthen by a factor of 8 (N=8192).



Lengthen by a factor of 16 (N=16,384).



Lengthen by a factor of 32 (N=32,768).



Clear peaks at k=217 and k=228 ($f=292.04\,\mathrm{Hz}$ and $f=306.85\,\mathrm{Hz}$). \rightarrow close to D (293.66 Hz) and E-flat (311.13 Hz): both notes are present!

Anything else?

Summary: Frequency Resolution

Increasing the length of the analysis by zero padding increases the **number of frequency points** (because sampling is more dense) but does not increase frequency **resolution** (because windowing is unchanged).

To increase frequency resolution we must increase the number of data that are analyzed.

In addition to being useful for characterizing the frequency content of a signal, the DFT can also be used to implement convolution.

Recall the convolution result for the DTFT.

If $f_a[n] \ \stackrel{\mathrm{DTFT}}{\Longrightarrow} \ F_a(\Omega)$ and

$$f_b[n] \stackrel{\text{DTFT}}{\Longrightarrow} F_b(\Omega)$$

then

$$(f_a * f_b)[n] \stackrel{\text{DTFT}}{\Longrightarrow} F_a(\Omega)F_b(\Omega)$$

This property is the basis of the **filtering** view of a system:

$$f_a[n]$$
 $f_b[n]$ $(f_a * f_b)[n]$ $F_a(\Omega)$ $F_a(\Omega)F_b(\Omega)$

Regular Convolution

Why does multiplication in frequency correspond to convolution in time?

Let
$$F(\Omega) = F_a(\Omega) \times F_b(\Omega)$$
. Find $f[n]$.

$$f[n] = \frac{1}{2\pi} \int_{2\pi} F(\Omega) e^{j\Omega n} d\Omega$$

$$= \frac{1}{2\pi} \int_{2\pi} F_a(\Omega) F_b(\Omega) e^{j\Omega n} d\Omega$$

$$= \frac{1}{2\pi} \int_{2\pi} F_a(\Omega) \Big(\sum_{m=-\infty}^{\infty} f_b[m] e^{-j\Omega m} \Big) e^{j\Omega n} d\Omega$$

$$= \sum_{m=-\infty}^{\infty} f_b[m] \underbrace{\frac{1}{2\pi} \int_{2\pi} F_a(\Omega) e^{j\Omega(n-m)} d\Omega}_{fa[n-m]}$$

$$= \sum_{m=-\infty}^{\infty} f_b[m] f_a[n-m] \equiv (f_a * f_b)[n]$$

Multiplying in frequency is equivalent to convolving in time.

The argument for the DFT is similar to the one for the DTFT.

Let $F[k] = F_a[k] \times F_b[k]$. Find f[n].

$$f[n] = \sum_{k=0}^{N-1} F[k] e^{j\frac{2\pi k}{N}n} = \sum_{k=0}^{N-1} F_a[k] F_b[k] e^{j\frac{2\pi k}{N}n}$$

$$= \sum_{k=0}^{N-1} F_a[k] \left(\frac{1}{N} \sum_{m=0}^{N-1} f_b[m] e^{-j\frac{2\pi k}{N}m}\right) e^{j\frac{2\pi k}{N}n}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} f_b[m] \underbrace{\left(\sum_{k=0}^{N-1} F_a[k] e^{j\frac{2\pi k}{N}(n-m)}\right)}_{fa[n-m]?}$$

No! $f_a[n]$ is only defined for $0 \le n < N$, but n-m can fall outside that range.

The argument for the DFT is similar to the one for the DTFT.

Let $F[k] = F_a[k] \times F_b[k]$. Find f[n].

$$f[n] = \sum_{k=0}^{N-1} F[k] e^{j\frac{2\pi k}{N}n} = \sum_{k=0}^{N-1} F_a[k] F_b[k] e^{j\frac{2\pi k}{N}n}$$

$$= \sum_{k=0}^{N-1} F_a[k] \left(\frac{1}{N} \sum_{m=0}^{N-1} f_b[m] e^{-j\frac{2\pi k}{N}m}\right) e^{j\frac{2\pi k}{N}n}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} f_b[m] \left(\sum_{k=0}^{N-1} F_a[k] e^{j\frac{2\pi k}{N}(n-m)}\right)$$

$$f_a[(n-m) \mod N]$$

Since k is integer, the complex exponential is periodic in n-m, period N. Therefore the parenthesized expression is $f_a[(n-m) \mod N]$, and

$$f[n] = \frac{1}{N} \sum_{a=0}^{N-1} f_b[m] f_a[(n-m) \mod N] \equiv \frac{1}{N} (f_a \circledast f_b)[n]$$

Multiplfying DFTs is equivalent to circular convolution in time.

If $f_a[n] \ \stackrel{\mathrm{DFT}}{\Longrightarrow} \ F_a[k]$ and

$$f_b[n] \stackrel{\text{DFT}}{\Longrightarrow} F_b[k]$$

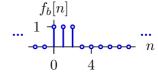
then

$$\frac{1}{N}(f_a \circledast f_b)[n] \stackrel{\text{DFT}}{\Longrightarrow} F_a[k]F_b[k]$$

where

$$(f_a \circledast f_b)[n] = \sum_{a=1}^{N-1} f_b[m] f_a[(n-m) \mod N]$$

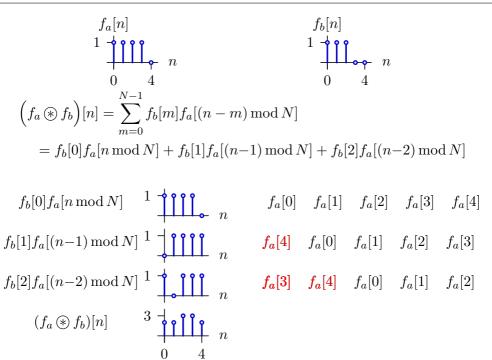
Superposition View of Conventional Convolution



$$(f_a * f_b)[n] = \sum_{m=-\infty}^{\infty} f_b[m] f_a[n-m] = f_b[0] f_a[n] + f_b[1] f_a[n-1] + f_b[2] f_a[n-2]$$

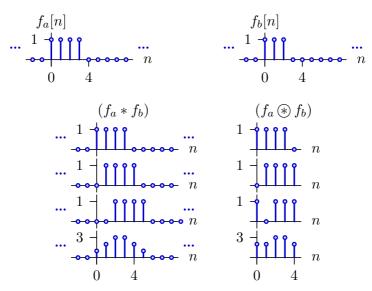
$$f_b[0]f_a[n]$$
 ... $1 \rightarrow 0$... n
 $f_b[1]f_a[n-1]$... $1 \rightarrow 0$... n
 $f_b[2]f_a[n-2]$... $1 \rightarrow 0$... n
 $(f_a * f_b)[n]$... $3 \rightarrow 0$... n

Superposition View of Circular Convolution (N=5)



Side By Side

The parts of the conventional convolution that would fall outside the DFT window "alias" to points inside the DFT window.



Summary

Today we discussed two critical issues in using the DFT.

- Frequency resolution how the length of a signal determines the ability to discriminate frequencies using the DFT.
- Circular Convolution how the DFT can be used to carry out time domain operations.

Question of the Day

Determine the value of the following expression:

$$\left(\delta[n-2]\circledast\left(u[n-1]-u[n-4]\right)\right)[2]$$

where the circular convolution has length $N{=}5.\,$