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Yet Another Fourier Representation

Why do we need another Fourier Representation?

Fourier series represent signals as sums of sinusoids. They provide insights

that are not obvious from time representations, but Fourier series are only

defined for periodic signals.

X[k] =
∑
n=〈N〉

x[n]e−j2πkn/N (summed over a period)

Fourier transforms have no periodicity constaint:

X(Ω) =
∞∑

n=−∞
x[n]e−jΩn (summed over all samples n)

but are functions of continuous domain (Ω).

→ not convenient for numerical computations

Discrete Fourier Transform: discrete frequencies for aperiodic signals.



Discrete Fourier Transform

Definition and comparison to other Fourier representations.

analysis synthesis

DTFS: X[k] = 1
N

∑
n=〈N〉

x[n]e−j
2πk
N

n x[n] =
∑
k=〈N〉

X[k]e j
2πk
N

n

DTFT: X(Ω) =
∞∑

n=−∞
x[n]e−jΩn x[n] = 1

2π

∫
2π
X(Ω)e jΩndΩ

DFT: X[k] = 1
N

N−1∑
n=0

x[n]e−j
2πk
N

n x[n] =
∑
k=〈N〉

X[k]e j
2πk
N

n

Major differences:

DTFS: x[n] is presumed to be periodic in N

DTFT: x[n] is arbitrary

DFT: only a portion of an arbitrary x[n] is considered



Relation Between DFT and DTFS

If we compute the DFT using a window length N that is equal to the period

of a periodic signal, then the DFT and DTFS coefficients are equal.

Let x1[n] = cos 2πn
64 . Then if N=64, the DFT coefficients are

X1[k] = 1
N

N−1∑
n=0

x[n]e−j
2π
N
kn = 1

2δ[k − 1] + 1
2δ[k − 63]

as plotted below.

k

X1[k]

0 64
0

1
2

The DFT coefficients are the same as the Fourier series coefficients.



Relation Between DFT and DTFS

If a signal is not periodic in the DFT window length N , then there are no

Fourier series coefficients to compare.

Let x2[n] = cos 3πn
64 . Then if N=64, the DFT coefficients are

X2[k] = 1
N

N−1∑
n=0

x2[n]e−j
2π
N
kn

are plotted below.

k

|X2[k]|

0 64
0

1
2

Even though x2[n] contains a single frequency Ω = 3π/64, there are large

coefficients at many different frequencies k.

The reason is that x2[n] is not periodic in n with period N = 64.



Relation Between DFT and DTFS

Although x2[n] = cos 3πn
64 is not periodic in N=64, we can define a signal

x3[n] that is equal to x2[n] for 0 ≤ n < 64 and that is periodic in N=64.

n

x3[n]

0 64 128
The DFT coefficients for this signal are the same as those for x2[n]:

k

|X3[k]|

0 64
0

1
2

Furthermore, the DFT coefficients of x3[n] equal the DTFS coefficients of

x3[n]. The large number of non-zero coefficients are necessary to produce

the step discontinuity at n = 64.



Two Ways to Think About the DFT

We just compared the DFT to the DTFS:

1. The DFT of a signal x[n] is equal to the DTFS of a version of x[n]
that is periodically extended so that it is periodic in N .

→ emphasizes the importance of periodicity in time.

2. We can also gain intuition for the DFT by comparing it to the DTFT.



Relation Between DFT and DTFT

The DFT can also be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1
N .

Let xw[n] = x[n]× w[n] represent a windowed version of x[n] where

w[n] =
{

1 0 ≤ n < N

0 otherwise

Then the Fourier transform of xw[n] is

Xw(Ω) =
∞∑

n=−∞
xw[n]e−jΩn =

∞∑
n=−∞

x[n]w[n]e−jΩn =
N−1∑
n=0

x[n]e−jΩn

Sample the resulting function of Ω at Ω = 2πk
N :

Xw

(
2πk
N

)
=

N−1∑
n=0

x[n]e−j
(2πk
N

)
n

Divide both sides by N :

1
N
Xw

(
2πk
N

)
= 1
N

N−1∑
n=0

x[n]e−j2πkn/N = X[k], which is the DFT of x[n]



Relation Between DFT and DTFT

Graphical depiction of relation between DFT and DTFT.

n

x[n]



Relation Between DFT and DTFT

Graphical depiction of relation between DFT and DTFT.

n

x[n]

window

n

xw[n] = x[n]w[n]

0 N−1



Relation Between DFT and DTFT

Graphical depiction of relation between DFT and DTFT.

n

x[n]

window

n

xw[n] = x[n]w[n]

0 N−1

DTFT

Ω

Xw(Ω)

−π 0 π



Relation Between DFT and DTFT

Graphical depiction of relation between DFT and DTFT.

n

x[n]

window

n

xw[n] = x[n]w[n]

0 N−1

DTFT

Ω

Xw(Ω)

−π 0 π

k

1
NXw(2πk

N )

-N2
0 N

2

sample: Ω→ 2πk
N

scale: 1/N



Relation Between DFT and DTFT

Graphical depiction of relation between DFT and DTFT.

n
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window
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n
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k

1
NXw(2πk

N )
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Relation Between DFT and DTFT

Graphical depiction of relation between DFT and DTFT.

n

x[n]

window

DFT

n

xw[n] = x[n]w[n]

0 N−1

DTFT

Ω

Xw(Ω)

−π 0 π

k

1
NXw(2πk

N )

-N2
0 N

2

sample: Ω→ 2πk
N

scale: 1/N

While sampling and scaling are important, it is the windowing that most

affects frequency content.



Effect of Windowing on Fourier Representations

Determine effects of windowing on signals with a single frequency Ωo.

Step 1: Find X(Ω), the DTFT of a complex exponential signal:

x[n] = ejΩon

Step 2: Find Xw(Ω), the DTFT of a windowed version of x[n]:
xw[n] = x[n]w[n]

Step 3: Compare Xw(Ω) to X(Ω).



Check Yourself

Step 1:

Let x[n] = ejΩon

Find X(Ω), which is the DTFT of x[n].



Effect of Windowing on Fourier Representations

Step 1: Find the DTFT of a complex exponential x[n] = ejΩon.

The DTFT of a complex exponential is a train of impulses.

2π

Ωo
Ω

X(Ω)

2π−2π

ejΩon dtft=⇒

This is easy to verify using the DTFT synthesis equation.

x[n] = 1
2π

∫
2π
X(Ω)ejΩn dΩ

= 1
2π

∫ π

−π
2πδ(Ω−Ωo)ejΩn dΩ

=
∫ π

−π
δ(Ω−Ωo)ejΩon dΩ = ejΩon

∫ π

−π
δ(Ω−Ωo) dΩ

= ejΩon



Check Yourself

Step 2:

Let xw[n] represent a windowed version of x[n] = ejΩon.

xw[n] = x[n]w[n] = ejΩonw[n]

Find an expression for the Fourier transform Xw(Ω) in terms of the Fourier

transform W (Ω) of w[n].



Effect of Windowing on Fourier Representations

Step 2: Find the DTFT of xw[n], a windowed version of x[n].

Let xw[n] represent a windowed version of x[n] = ejΩon.

xw[n] = x[n]w[n] = ejΩonw[n]
Then

Xw(Ω) =

∞∑
n=−∞

ejΩonw[n]e−jΩn DTFT analysis equation

=

∞∑
n=−∞

w[n]e−j(Ω−Ωo)n combine exponential terms

= W (Ω− Ωo) DTFT of w[n], shifted in frequency

The DTFT of a windowed version of a complex exponential signal is a

shifted version of the DTFT of the window signal.

ejΩonw[n] dtft=⇒ W (Ω− Ωo)

→ Need to know W (Ω).



Effect of Windowing on Fourier Representations

Simplest window is rectangular, with width of N (length of DFT analysis)

w[n] =
{

1 0 ≤ n < N

0 otherwise

as shown below for N = 15.

n

w[n]

0 15

1

The DTFT of w[n] is

W (Ω) =
∞∑

n=−∞
w[n]e−jΩn =

N−1∑
n=0

e−jΩn = 1− e−jΩN

1− e−jΩ =
sin NΩ

2
sin Ω

2
e−jΩ

N−1
2

15

Ω

|W (Ω)|

0 2π−2π



Effect of Windowing on Fourier Representations

The DTFT of a windowed version of a complex exponential signal is a

shifted version of the DTFT of the window signal.

xw[n] = ejΩonw[n] dtft=⇒ Xw(Ω) = W (Ω−Ωo)

15

Ω

|W (Ω)|

0 2π−2π

15

Ω

|Xw(Ω)| = |W (Ω−Ωo)|

0 2π−2π



Effect of Windowing on Fourier Representations

Step 3: Compare Xw(Ω) to X(Ω).

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

The frequency content of X(Ω) is at discrete frequencies Ω = Ωo + 2πm.

The frequency content of Xw(Ω) is most dense at these same frequencies,

but is spread out over almost all other frequencies as well.



Relation Between DFT and DTFT

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N .

n

x[n]

window

DFT

n

xw[n] = x[n]w[n]

0 N−1

DTFT

Ω

Xw(Ω)

−π 0 π

k

1
NXw(2πk

N )

-N2
0 N

2

sample: Ω→ 2πk
N

scale: 1/N

Next: apply these steps to a sinusoidal input.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 2π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

One sample is taken at the peak, and the others fall on zeros.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 4π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

One sample is taken at the peak, and the others fall on zeros.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 6π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

One sample is taken at the peak, and the others fall on zeros.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 3π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Now none of the samples fall on zeros.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 2π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 2.2π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 2.4π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 2.6π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 2.8π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 3π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 3.2π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 3.4π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 3.6π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 3.8π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Effect of Windowing on Fourier Representations

The DFT can be thought of as samples of the DTFT of a windowed

version of x[n] scaled by 1/N . Here Ωo = 4π
15 .

original signal

2π

Ωo
Ω

X(Ω)

2π−2π

x[n] = ejΩon dtft=⇒

windowed

15

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dtft=⇒

sampled and scaled

1

Ω

|Xw(Ω)|

0 2π−2π

xw[n] = x[n]w[n] dft=⇒

Generally, the relation between the samples is complicated.



Spectral Blurring introduces a Time/Frequency Tradeoff

Longer windows provide finer frequency resolution.

Ω

W (Ω)

π

N = 16

4π/N

Ω

W (Ω)

π

N = 32

4π/N

Ω

W (Ω)

π

N = 64

4π/N

The width of the central lobe is inversely related to window length.



Frequency Resolution

The DFT analysis period N determines both the window in time that is

analyzed and the frequency resolution of the result.

The time window is divided into N samples numbered n = 0 to N−1.

[ ] time

0 1 N−1 N n [samples]

0 1
fs

N−1
fs

N
fs

t [seconds]

Discrete frequencies are similarly numbered as k = 0 to N−1.

[ ] frequency

0 1 N−1 N k

0 2π
N 2π Ω [rad/sample]

0 fs
N

fs f [Hz]

As the analysis length N increases, both temporal duration and spectral

resolution increase.



Summary

Today we introduced a new Fourier representation for DT signals:

the Discrete Fourier Transform (DFT).

The DFT has a number of features that make it particularly convenient.

• It is not limited to periodic signals.

• It has discrete domain (k instead of Ω) and finite length:

convenient for numerical computation.

The finite analysis window of the DFT can smear the resulting spectral

representation.

• The DFT is equivalent to the DTFS of a periodically extended ver-

sion of the input signal. The smear results because of discontinuities

introduced by periodic extension.

• The DFT is equivalent to the DTFT of a windowed version of the input

signal that is then sampled and scaled in amplitude. The windowing

smears the spectral representation because of discontinuities introduced

by the windowing.



Two Ways to Think About the DFT

Compare to DTFS:

1. The DFT of a signal x[n] is equal to the DTFS of a version of x[n]
that is periodically extended so that it is periodic in N .

→ emphasizes the importance of periodicity in time.

Compare to DTFT:

2. The DFT is equal to samples of the DTFT of a windowed version of

the original signal.

→ emphasizes the importance of spectral smear in frequency.

The DTFS and DTFT offer different and complementary

• rules for constructing all of the components of the DFT, and

• intuition for understanding the origin of ”extra” components of DFT.



Question of the Day

Find an expression for the 10-point DFT (i.e., N = 10) of the following

signal:

x[n] = (−1)n


