Sampling Sinusoids

Let f(t) represent the following continuous-time signal:

 $f(t) = 4\cos(300\pi t) + 2\sin(400\pi t) + \cos(600\pi t)$

Part a. Let $f_a[n]$ represent a discrete-time signal that is obtained by sampling f(t) with sampling frequency $f_{sa} = 100$ Hz, so that

$$f_a[n] = f(n/f_{sa})$$

Determine the fundamental (shortest) period of $f_a[n]$ (if one exists). Briefly explain.

 $f_a[n] = f(n/100) = 4\cos(3\pi n) + 2\sin(4\pi n) + \cos(6\pi n) = 4(-1)^n + 0 + 1$

This function is periodic in n with periods $N = 2, 4, 6, \ldots$. Therefore the fundamental period is N = 2.

Part b. Let $f_b[n]$ represent a discrete-time signal that is obtained by sampling f(t) with sampling frequency $f_{sb} = 200$ Hz, so that

$$f_b[n] = f(n/f_{sb})$$

Determine the fundamental (shortest) period of $f_b[n]$ (if one exists). Briefly explain.

 $f_b[n] = f(n/200) = 4\cos(3\pi n/2) + 2\sin(2\pi n) + \cos(3\pi n) = 4\cos(3\pi n/2) + 0 + (-1)^n$

The fundamental period of this function is N = 4.

Part c. Let $f_c[n]$ represent a discrete-time signal that is obtained by sampling f(t) with sampling frequency $f_{sc} = 300$ Hz, so that

 $f_c[n] = f(n/f_{sc})$

Determine the fundamental (shortest) period of $f_c[n]$ (if one exists). Briefly explain.

 $f_c[n] = f(n/300) = 4\cos(\pi n) + 2\sin(4\pi n/3) + \cos(2\pi n) = 4(-1)^n + 2\sin(4\pi n/3) + 1$

The fundamental period of this function is N = 6.

Part d. Determine a sampling frequency f_{sd} for which

$$f_d[n] = f(n/f_{sd})$$

is not periodic (if such a frequency exists). Briefly explain.

If f_s is an irrational number, then $300\pi/f_s$, $400\pi/f_s$, and $600\pi/f_s$ will not be integer multiples of 2π . Therefore f_s can be any irrational number, e.g., $f_s = \pi$.