Input-Output Pairs

The following signals are periodic in time ¢ with period T = 1.

r1(t)=21(t +1)
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Determine whether the following systems could be linear and time-invariant (LTT).

z1(t) —»| System A —» x2(t) x1(t) —»| System B —» z3(¢)
xo(t) —»| System C +——» () x2(t) —»| System D —» x3(t)
x3(t) —»| System E —» z1(t) x3(t) —»| System F +—» x5(t)




We can use the “filter” idea as follows. First calculate the Fourier series coefficients. Then ask if each Fourier
series coefficient in the output is a scaled version of the corresponding coefficient in the input.
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System A: The Fourier series coefficients at k& = 2,6,10,... are zero in 7 but these are not zero in zs.
Therefore the system could not be LTI.
System B: The Fourier series coefficients at k = 2,4,6,8,10, ... are zero in 27 but these are not zero in x3.

Therefore the system could not be LTI.

System C: All of the nonzero Fourier coefficients in x; are also present in xo. Therefore the system could be
LTI

System D: The Fourier series coefficients at k = 4,8,12, 16, ... are zero in xo but these are not zero in xs.
Therefore the system could not be LTI.

System E: All of the nonzero Fourier coefficients in x; are also present in x3. Therefore the system could be
LTI

System F: All of the nonzero Fourier coefficients in z9 are also present in x3. Therefore the system could be
LTI




