
Find the Coefficients

Find constants c_1 , c_2 , and c_3 so that the solution to the difference equation

$$c_1y[n-1] + c_2y[n] + c_3y[n+1] = \delta[n]$$

is equal to the signal y[n] shown below.

The difference equation must be true for all n.

If n = 0, the difference equation requires $\frac{1}{2}c_1 + c_2 + \frac{1}{3}c_3 = 1$.

If n = -1, the difference equation requires $\frac{1}{4}c_1 + \frac{1}{2}c_2 + c_3 = 0$. Notice that this same constraint on c_1 , c_2 , and c_3 results for all values of n < 0.

If n = 1, the difference equation requires $c_1 + \frac{1}{3}c_2 + \frac{1}{9}c_3 = 0$. Notice that this same constraint on c_1 , c_2 , and c_3 results for all values of n > 0.

Solving these equations yields a single unique solution, $c_1 = -2/5$, $c_2 = 7/5$, and $c_3 = -3/5$.