
1

Circular Convolution

Part a.
Write a Python program called conv to compute the convolution of two discrete-time signals: x1[n] and
x2[n]. Assume that the signal x1[n] is zero outside the range 0 ≤ n < N1 and that the signal x2[n] is
zero outside the range 0 ≤ n < N2. Represent these signals as Python lists x_1 and x_2 where the first
element in each list represents the value of the signal at n = 0 and the lengths of x_1 and x_2 are N1 and
N2 respectively.
Demonstrate the use of your program by convolving two rectangular pulses: one of length 3 and the other
of length 7.

def conv(x,y):
answer = []
for n in range(len(x)+len(y)-1):

answer.append(sum([x[m]*y[n-m] for m in range(max(0,n-len(y)+1),min(n+1,len(x)))]))
return answer

Part b.
Write a Python program called circconv to compute the circular convolution of two discrete-time signals:
x1[n] and x2[n], as described in the previous part. Inputs to circconv should include the two input lists
as well as the analysis width N of the circular convolution.
Demonstrate the use of your program by circularly convolving two rectangular pulses that are each of
length 32 using an analysis width of N = 32. Compare the result of circular convolution with that of
conventional convolution. Briefly explain the relation of these two results.

def circconv(x,y,N):
answer = N*[0]
z = conv(x,y)
for n in range(len(z)):

answer[n%N] += z[n]
return answer



2

In this problem we convolved two rectangular signals with non-zero samples in the range 0 ≤ n < 32 to get
a result that had non-zero samples in the range 0 ≤ n < 64.
However, the result of circular convolution is confined to the range 0 ≤ n < 32. Samples outside that range
are wrapped (i.e., aliased) back into the range, so that

(x2 ©∗ x2)[n] = (x2 ∗ x2)[n] + (x2 ∗ x2)[n+ 32]

for 0 ≤ n < 32. Because the inputs were rectangular, the convolution was triangular. Wrapping the triangle
combined the portion of the convolution with positive slope with the portion with negative slope. The result
was rectangular.

Part c.
Let x3[n] represent the following signal:

x3[n] =
{ sin(2πn/32) if 0 ≤ n < 32

0 otherwise
Compute the conventional convolution of x3[·] with itself.
Compare the result with an analogous circular convolution, where the analysis window is N = 32. Briefly
explain how the two results differ.

In this problem, one cycle of a sine wave with length 32 was convolved with itself. The result was greatest
when the positive half cycles of the signals overlapped (n = 16) and smallest when the positive and negative
halves overlapped (n = 32).
As in the previous part, circular convolution is confined to the range 0 ≤ n < 32. Samples outside that range
are wrapped (i.e., aliased) back into the range, so that

(x2 ©∗ x2)[n] = (x2 ∗ x2)[n] + (x2 ∗ x2)[n+ 32]



3
for 0 ≤ n < 32.
Interestingly, The result is a negative cosine wave. This result makes sense in the frequency domain. The
Fourier series representation of the original sine wave is X4[k]:

X4[k] = − j

2δ[k − 1] + j

2δ[k + 1]

Convolution in time is equivalent to multiplication in frequency. If

x5[n] = (x4 ∗ x4)[n]

then

X5[k] = X4[k] ×X4[k] = −1
2δ[k − 1] − 1

2δ[k + 1]

which is a negative cosine signal.


