Two-Dimensional Patterns

Which of A-H corresponds to f_0?

\[f_0[r, c] \]
\[f_1[r, c] \]
\[f_2[r, c] \]
\[f_3[r, c] \]
\[f_4[r, c] \]
\[f_5[r, c] \]
\[f_6[r, c] \]
\[f_7[r, c] \]

A B C D
E F G H
Which of A-H corresponds to f_0?
Two-Dimensional Patterns

Which of A-H corresponds to f_1?
Two-Dimensional Patterns

Which of A-H corresponds to f_1?
Two-Dimensional Patterns

Which of A-H corresponds to f_2?

- $f_0[r,c]$:
- $f_1[r,c]$:
- $f_2[r,c]$:
- $f_3[r,c]$:
- $f_4[r,c]$:
- $f_5[r,c]$:
- $f_6[r,c]$:
- $f_7[r,c]$:

A:0 B:1 C D:0 E F:1 G H
Two-Dimensional Patterns

Which of A-H corresponds to f_2?

- $f_0[r, c]$
- $f_1[r, c]$
- $f_2[r, c]$
- $f_3[r, c]$
- $f_4[r, c]$
- $f_5[r, c]$
- $f_6[r, c]$
- $f_7[r, c]$

A: B: C:2 D:0
E: F:1 G: H
Two-Dimensional Patterns

Which of A-H corresponds to f_3?
Two-Dimensional Patterns

Which of A-H corresponds to f_3?

\[f_0[r, c] \]
\[f_1[r, c] \]
\[f_2[r, c] \]
\[f_3[r, c] \]
\[f_4[r, c] \]
\[f_5[r, c] \]
\[f_6[r, c] \]
\[f_7[r, c] \]
Which of A-H corresponds to f_4?

- $f_0[r,c]$
- $f_1[r,c]$
- $f_2[r,c]$
- $f_3[r,c]$
- $f_4[r,c]$
- $f_5[r,c]$
- $f_6[r,c]$
- $f_7[r,c]$

A B C:2 D:0
E:3 F:1
Two-Dimensional Patterns

Which of A-H corresponds to f_4?

- $f_0[r, c]$
- $f_1[r, c]$
- $f_2[r, c]$
- $f_3[r, c]$
- $f_4[r, c]$
- $f_5[r, c]$
- $f_6[r, c]$
- $f_7[r, c]$

A: 4
B
C: 2
D: 0
E: 3
F: 1
G
H
Which of A-H corresponds to f_5?
Two-Dimensional Patterns

Which of A-H corresponds to f_5?

A:4 B C:2 D:0 E:3 F:1 G:5 H
Which of A-H corresponds to f_6?
Two-Dimensional Patterns

Which of A-H corresponds to f_6?

$$f_0[r,c]$$

$$f_1[r,c]$$

$$f_2[r,c]$$

$$f_3[r,c]$$

$$f_4[r,c]$$

$$f_5[r,c]$$

$$f_6[r,c]$$

$$f_7[r,c]$$

A: 4 B: 6 C: 2 D: 0

E: 3 F: 1 G: 5 H
Two-Dimensional Patterns

Which of A-H corresponds to f_7?
Two-Dimensional Patterns

Which of A-H corresponds to f_7?

A:4 B:6 C:2 D:0 E:3 F:1 G:5 H:7
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above? In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

\[\text{Circular Convolution} \]

\[= 0 \]
\[= +1 \]
\[x_0 \]
\[-6 \rightarrow 0 \rightarrow 6 \]
\[-4 \rightarrow 4 \]

\[= -1.7 \]
\[= 0 \]
\[= +2 \]
\[x_1 \]
\[-6 \rightarrow 0 \rightarrow 6 \]
\[-4 \rightarrow 4 \]

Which of the following images shows the circular convolution of the images above?

- Graph A
- Graph B
- Graph C
- Graph D
- Graph E
- Graph F
- Graph G
- Graph H
- Graph I
- Graph J
- Graph K
- Graph L
- Graph M
- Graph N
- Graph O

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

\[x_0 \ast C = C \]

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

\[\begin{array}{ccc}
-6 & 0 & 6 \\
0 & * & 0 \\
-4 & 0 & 4 \\
-2 & 0 & 2 \\
-4 & 0 & 4 \\
-6 & 0 & 6 \\
\end{array} \]

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

\[
\begin{align*}
\text{Graph A} & \quad \text{Graph B} \\
\text{Graph C} & \quad \text{Graph D} \\
\text{Graph E} & \quad \text{Graph F} \\
\text{Graph G} & \quad \text{Graph H} \\
\text{Graph I} & \quad \text{Graph J} \\
\text{Graph K} & \quad \text{Graph L} \\
\text{Graph M} & \quad \text{Graph N} \\
\text{Graph O} & \\
\end{align*}
\]

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).
Circular Convolution

Which of the following images shows the circular convolution of the images above?

In each image, black represents the most negative value (not necessarily 0) and white represents the most positive value (not necessarily 1).