Quiz 1: Solutions
1. Sinusoids

Part a
This cosine looks like it goes through one period around every 10 samples, so $\Omega_1 \approx \frac{2\pi}{10}$.
The amplitude looks like 2, but we start at a negative peak; so we could either say $A_1 \approx 2$ and $\phi_1 \approx \pm \pi$ (or any $m\pi$, where m is an odd integer); or we could say $A_1 \approx -2$ and $\phi_1 \approx 0$ (or any integer multiple of 2π).

Part b
Here we have
$$x_2[n] = a_2e^{j\Omega_2n} + a_2^*e^{-j\Omega_2n} = 2|a_2|\cos(\Omega_2n + \angle a_2).$$
It looks like the amplitude of this wave is about 1, so $|a_2| \approx 1/2$.
The cosine seems to go through one full cycle every 15 samples, so $\Omega_2 \approx 2\pi/15$.
It also looks like it has been shifted to the right by 3/4 of a full cycle (or, equivalently, to the left by 1/4 of a full cycle), so $\angle a_2 \approx 2\pi/4 = \pi/2$.

Part c
We can express
$$x_3[n] = c_3 \cos \Omega_3 n + d_3 \sin \Omega_3 n$$
as
$$x_3[n] = c_3 \left(\frac{e^{j\Omega_3n} + e^{-j\Omega_3n}}{2} \right) + d_3 \left(\frac{e^{j\Omega_3n} - e^{-j\Omega_3n}}{2j} \right)$$
$$= \frac{1}{2}(c_3 - jd_3)e^{j\Omega_3n} + \frac{1}{2}(c_3 + jd_3)e^{-j\Omega_3n}$$
$$= \text{Re} \left((c_3 - jd_3)e^{j\Omega_3n} \right)$$
Since the period of $x_3[n]$ is around 20, it follows that $\Omega_3 \approx \frac{2\pi}{20}$
The peak amplitude of $x_3[n]$ is approximately 1, so $|c_3 - jd_3| = \sqrt{c_3^2 + d_3^2} = 1$.
The first peak of $x_3[n]$ occurs at about 1/8 of a cycle. So the angle of $c_3 - jd_3$ must be approximately $-\pi/4$, meaning $c_3 \approx d_3$. Therefore,
$$c_3 \approx d_3 \approx \frac{1}{\sqrt{2}}$$
2. Fourier Transforms

Part 1

Note that \(b = X(\omega = 0) \), or, said another way, \(b \) is the DC component of \(x(\cdot) \), which will be equal to the total 'area under the curve' of \(x(\cdot) \), so \(b = (t_2 - t_1)a \).

Part 2

Here, we probably want to solve for \(X(\omega) \) more generally, to get a sense of how the function behaves.

It will be simpler to consider a related function \(x_c(\cdot) \) that is a rectangular pulse of the same width and height, but centered around \(t = 0 \) rather than being offset. In that case, since we have \(x(t) = x_c(t - (t_1 + t_2)/2) \), we know that:

\[
X(\omega) = e^{-j\left(\frac{t_1 + t_2}{2}\omega\right)} X_c(\omega).
\]

We can then solve for \(X_c(\omega) \):

\[
X_c(\omega) = \int_{-\infty}^{\infty} x_c(t) e^{-j\omega t} dt = \int_{-(t_2-t_1)/2}^{(t_2-t_1)/2} ae^{-j\omega t} dt = a \int_{-(t_2-t_1)/2}^{(t_2-t_1)/2} e^{-j\omega t} dt
\]

\[
= -\frac{a}{j\omega} e^{-j\omega t \mid_{t=-(t_2-t_1)/2}^{(t_2-t_1)/2}} = -\frac{a}{j\omega} \left(e^{-j\omega(t_2-t_1)/2} - e^{j\omega(t_2-t_1)/2} \right) = \frac{2a \sin\left(\frac{t_2-t_1}{2}\omega\right)}{\omega}
\]

So, all things considered, we have:

\[
X(\omega) = e^{-j\left(\frac{t_1 + t_2}{2}\omega\right)} X_c(\omega) = e^{-j\left(\frac{t_1 + t_2}{2}\omega\right)} \frac{2a \sin\left(\frac{t_2-t_1}{2}\omega\right)}{\omega}
\]

From this, we can see that \(|X(\Omega)| = |X_c(\Omega)| = \frac{2a \sin\left(\frac{t_2-t_1}{2}\omega\right)}{\omega} \)

The value \(\omega_1 \) is where this function first crosses zero, which will happen when the argument to \(\sin \) is \(\pi \), so we have:

\[
\left(\frac{t_2 - t_1}{2}\right) \omega_1 = \pi \quad \Rightarrow \quad \omega_1 = \frac{2\pi}{t_2 - t_1}
\]

Parts 3 and 4

From the work above, we also know that \(\angle \{X(\Omega)\} = \angle \{X_c(\Omega)\} - \left(\frac{t_1 + t_2}{2}\omega\right) \)

So we should see a linear shape in the graph, with slope \(-\frac{t_1 + t_2}{2}\). However, we should also note that since \(X_c(\Omega) \) switched signs every \(\omega_1 \) radians, \(\angle \{X_c(\Omega)\} \) was increasing (or decreasing) by \(\pi \) every \(\omega_1 \) radians as well. So we not only to see a linear slope, but we also expect jumps upward every so often. The only graph that fits the bill is graph F.

The value \(c \) corresponds to the slope, which should be \(-\frac{t_1 + t_2}{2}\), as seen above.
3. Related Transforms

Part 1
\[f_2[n] = -f[-n] \quad \Rightarrow \quad F_2(\Omega) = -F(-\Omega) \]

Part 2
\[f_3[n] = f[n] - \delta[n] \quad \Rightarrow \quad F_3(\Omega) = F(\Omega) - 1 \]

Part 3
\[f_4[n] = \text{Asym} \{ f[n] \} = \frac{f[n] - f[-n]}{2} \quad \Rightarrow \quad F_4(\Omega) = j \text{Im} \{ F(\Omega) \} \]

Part 4
\[f_5[n] = f[n + 2] \quad \Rightarrow \quad F_5(\Omega) = e^{j2\Omega} F(\Omega) \]

Part 5
If we let:
\[f_s[n] = \begin{cases} f[n/3] & \text{if } n \text{ is divisible by 3} \\ 0 & \text{otherwise} \end{cases} \]
Then we have \(f_6[n] = f_s[n] + f_s[n - 1] + f_s[n + 1] \), so:
\[F_6(\Omega) = F_s(\Omega) \left(1 + e^{j\Omega} + e^{-j\Omega} \right) = F_s(\Omega) (1 + 2 \cos(\Omega)) \]
Since \(F_s(\Omega) = F(3\Omega) \), we have:
\[F_6(\Omega) = (F(3\Omega)) (1 + 2 \cos(\Omega)) \]
4. DFT

Part 1

We know that \(k = \frac{N}{f_s} \), so since \(k = \pm 268 \approx \pm \frac{f_s}{2} \), we know that we must have \(N \approx \frac{f_s}{2} \), so the only real possibility is \(N = 1024 \).

Part 2

Importantly, since the 'A' note (\(f = 1760 \text{Hz} \)) is above the Nyquist rate, it is going to alias down to \(f_{\text{apparent}} = f_s - 1760 \text{Hz} = 240 \text{Hz} \). Converting to \(k \), we find \(k = \pm 240 \left(\frac{1024}{2000} \right) \approx \pm 123 \).

We could also find this by first finding the expected \(k \) value for \(f = 1760 \text{Hz} \) first:
\[
k = \pm \left(\frac{1024}{2000} \right) 1760 \approx \pm 901.
\]
But that’s not in the range \([0, N/2]\), so it can’t be the final answer. Since the coefficients are periodic in \(N \), we need to find a value \(1024m + 901 \), where \(m \) is an integer, for which that value falls in the range \([0, 512]\). That happens to be \(1024 - 901 = 123 \).

Part 3

Since the 'C' note shows up at \(k = \pm 268 \) and the 'A' note (due to aliasing) shows up at \(k = \pm 123 \), the 'A' note must correspond to the peaks that are closer to 0, i.e., \(k_1 \).
5. DTFS Components

The first six of these problems can be solved directly:

Part 0

\[X_0[k] = \frac{1}{6} \]

This signal has a constant magnitude of \(\frac{1}{6} \) (graph G), a constant real part of \(\frac{1}{6} \) (graph G), and a constant imaginary part of 0 (graph C).

Looking ahead, importantly, since all of \(x_0, x_1, x_2, x_3, x_4, \) and \(x_5 \) are just time-shifted versions of each other, they should all have the same magnitude (graph G).

Part 1

\[X_1[k] = \frac{1}{6} e^{-j\frac{2\pi}{6}k} = \frac{1}{6} \left(\cos \left(\frac{2\pi}{6} k \right) - j \sin \left(\frac{2\pi}{6} k \right) \right) \]

The magnitude graph is still G, but now the real part looks like a cosine that goes through one period in \(K = 6 \) (graph I), and the imaginary part looks like an inverted sine that goes through one period in \(K = 6 \) (graph D).

Part 2

\[X_2[k] = \frac{1}{6} e^{-j\frac{4\pi}{6}k} = \frac{1}{6} \left(\cos \left(\frac{4\pi}{6} k \right) - j \sin \left(\frac{4\pi}{6} k \right) \right) \]

This is the same, but now the cosine and sine each go through two full periods in \(K = 6 \), so magnitude is still G, real part is K, and imaginary part is E.

Part 3

This one is interesting, in that \(X_3[k] \) ends up being purely real:

\[X_3[k] = \frac{1}{6} e^{-j\pi k} = \frac{1}{6} (-1)^k \]

Magnitude is G, real part is M, and imaginary part is C (no imaginary part).

Part 4

\[X_4[k] = \frac{1}{6} e^{-j\frac{4\pi}{6}k} = \frac{1}{6} e^{j\frac{2\pi}{6}k} = \frac{1}{6} \left(\cos \left(\frac{4\pi}{6} k \right) + j \sin \left(\frac{4\pi}{6} k \right) \right) \]

This looks like \(X_2[k] \), but with the imaginary part negated, so magnitude is G, real part is K, and imaginary part is A.

Part 5

\[X_5[k] = \frac{1}{6} e^{-j\frac{10\pi}{6}k} = \frac{1}{6} e^{j\frac{2\pi}{6}k} = \frac{1}{6} \left(\cos \left(\frac{4\pi}{6} k \right) + j \sin \left(\frac{4\pi}{6} k \right) \right) \]

This looks like \(X_1[k] \), but with the imaginary part negated, so magnitude is G, real part is I, and imaginary part is B.
The next 6 parts all have simple relationships to the first 6 parts. In particular, note that for all i, $y_i[n] = 1 - x_i[n]$. Thus, by linearity, we have $Y_i[k] = \delta[k] - X_i[k]$, which we can use to simplify our analysis.

Since all of the signals y_i are just time-shifted versions of each other, all of the Y_i will have the same magnitude.

And for each $Y_i[k]$, we will have $\text{Re}(Y_i[0]) = 1 - \text{Re}(X_i[0])$, and for all other k, $\text{Re}(Y_i[k]) = -\text{Re}(X_i[k])$.

Similarly, for all k, $\text{Im}(Y_i[k]) = -\text{Im}(X_i[k])$.

Part 6

$Y_0[k] = \delta[k] - X_0[k] = \delta[k] = 1/6$

Magnitude O, real part T, imaginary part C.

Part 7

$Y_1[k] = \delta[k] - X_1[k]$

Magnitude O, real part S, imaginary part B.

Part 8

$Y_2[k] = \delta[k] - X_2[k]$

Magnitude O, real part Q, imaginary part A.

Part 9

$Y_3[k] = \delta[k] - X_3[k]$

Magnitude O, real part N, imaginary part C.

Part 10

$Y_4[k] = \delta[k] - X_4[k]$

Magnitude O, real part Q, imaginary part E.

Part 10

$Y_5[k] = \delta[k] - X_5[k]$

Magnitude O, real part S, imaginary part D.