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The Signals and System Abstraction

Describe a system (physical, mathematical, or computational) by the way

it transforms an input signal into an output signal.

system
signal

in

signal

out

This is particularly useful for systems that are linear and time-invariant.



Superposition

Break input into additive parts and sum the responses to the parts.
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Superposition works because the system is linear.



Linearity

A system is linear if its response to a weighted sum of inputs is equal to

the weighted sum of its responses to each of the inputs.

Given

systemx1[n] y1[n]
and

systemx2[n] y2[n]

the system is linear if

systemαx1[n] + βx2[n] αy1[n] + βy2[n]

is true for all α and β and all times n.



Superposition

Break input into additive parts and sum the responses to the parts.
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Superposition works if the system is linear.



Superposition

Break input into additive parts and sum the responses to the parts.
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Reponses to parts are easy to compute if system is time-invariant.



Time-Invariance

A system is time-invariant if delaying the input to the system simply delays

the output by the same amount of time.

Given

systemx[n] y[n]

the system is time invariant if

systemx[n− n0] y[n− n0]

is true for all n and all n0.



Superposition

Break input into additive parts and sum the responses to the parts.
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Superposition is easy if the system is linear and time-invariant.



Unit-Sample Response

If a system is linear and time-invariant (LTI), its input-output relation is

completely specified by the system’s unit-sample response h[n].

1. One can always find the unit-sample response of a system.

LTIδ[n] h[n]

2. Time invariance implies that shifting the input simply shifts the output.

LTIδ[n− k] h[n− k]

3. Homogeneity implies that scaling the input simply scales the output.

LTIx[k]δ[n− k] x[k]h[n− k]

4. Additivity implies that the response to a sum is the sum of responses.

LTIx[n] =
∞∑

k=−∞
x[k]δ[n− k] y[n] =

∞∑
k=−∞

x[k]h[n− k]

≡ (x ∗ h)[n]

The output of an LTI system can always be found by convolving: (x∗h)[n].



Convolution

Response of an LTI system to an arbitrary input.

LTIx[n] y[n]

y[n] =
∞∑

k=−∞
x[k]h[n− k] ≡ (x ∗ h)[n]

This operation is called convolution.



Structure of Convolution
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Structure of Convolution

y[1] =
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Structure of Convolution
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Structure of Convolution
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Structure of Convolution
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Structure of Convolution
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Check Yourself

1 ∗ 1

Which plot shows the result of the convolution above?

1.
1

2.
1

3.
1

4.
1

5. none of the above



Check Yourself

1 ∗ 1
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Check Yourself

1 ∗ 1

Which plot shows the result of the convolution above? 3

1.
1

2.
1

3.
1

4.
1

5. none of the above



Unit-Sample Response

The unit-sample response is a complete description of a system.

LTIδ[n] h[n]

It can be used to determine the response to any other input.

n

δ[n]
→

n

h[n]

Given h[n] one can compute the response to any arbitrary input signal.

y[n] = (x ∗ h)[n] ≡
∞∑

k=−∞
x[k]h[n− k]



Continuous-Time Systems

Superposition and convolution are of equal importance for CT systems.



Impulse Response

A CT system is completely characterized by its impulse response, much

as a DT system is completely characterized by its unit-sample response.

We have worked with the impulse (Dirac delta) function δ(t) previously.

It’s defined in a limit as follows.

Let p∆(t) represent a pulse of width ∆ and height 1
∆ so that its area is 1.

t

p∆(t)

∆

1
∆

Then

δ(t) = lim
∆→0

p∆(t)

t

δ(t)

The impulse function can be used to break an arbitrary input x(t) into

time-based components, much as δ[k] is used for discrete-time signals.



Impulse Response

An arbitrary CT signal can be represented by an infinite sum of infinitesimal

impulses (which define an integral).

Approximate an arbitrary signal x(t) (blue) as a sum of pulses p∆(t) (red).

t

x(t)

x∆(t) =
∞∑

k=−∞
x(k∆)p∆(t− k∆)∆

and the limit of x∆(t) as ∆→ 0 will approximate x(t).

lim
∆→0

x∆(t) = lim
∆→0

∞∑
k=−∞

x(k∆)p∆(t− k∆)∆→
∫ ∞
−∞

x(τ)δ(t−τ) dτ

The result in CT is much like the result for DT:

x(t) =
∫ ∞
−∞

x(τ)δ(t− τ) dτ x[n] =
∞∑

m=−∞
x[m]δ(n−m)



Impulse Response

If a system is linear and time-invariant (LTI), its input-output relation is

completely specified by the system’s impulse response h(t).

1. One can always find the impulse response of a system.

systemδ(t) h(t)

2. Time invariance implies that shifting the input simply shifts the output.

systemδ(t−τ) h(t−τ)

3. Homogeneity implies that scaling the input simply scales the output.

systemx(τ)δ(t−τ) x(τ)h(t−τ)

4. Additivity implies that the response to a sum is the sum of responses.

systemx(t) =
∫ ∞
−∞

x(τ)δ(t−τ)dτ y(t) =
∫ ∞
−∞

x(τ)h(t−τ)dτ
≡ (x ∗ h)(t)

The output of an LTI system can always be found by convolving: (x∗h)(t).



Impulse Response

The impulse response is a complete description of a system.

LTIδ(t) h(t)

It can be used to determine the response to any other input.

t

δ(t)
→

t

h(t)

Given h(t) one can compute the response to any arbitrary input signal.

y(t) = (x ∗ h)(t) ≡
∫ ∞
−∞

x(τ)h(t− τ)dτ



Comparison of CT and DT Convolution

Convolution of CT signals is analogous to convolution of DT signals.

DT: y[n] = (x ∗ h)[n] =
∞∑

k=−∞
x[k]h[n− k]

CT: y(t) = (x ∗ h)(t) =
∫ ∞
−∞

x(τ)h(t− τ)dτ



Check Yourself

t

e−tu(t)

∗
t

e−tu(t)

Which plot shows the result of the convolution above?

1.
t

2.
t

3.
t

4.
t
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Check Yourself

Which plot shows the result of the following convolution?

t

e−tu(t)

∗
t

e−tu(t)

(
e−tu(t)

)
∗
(
e−tu(t)

)
=
∫ ∞
−∞

e−τu(τ)e−(t−τ)u(t− τ)dτ

=
∫ t

0
e−τe−(t−τ)dτ = e−t

∫ t

0
dτ = te−tu(t)

t



Check Yourself

t

e−tu(t)

∗
t

e−tu(t)

Which plot shows the result of the convolution above? 4
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t
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t
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Properties of Convolution

Commutivity:

(x ∗ y)(t) = (y ∗ x)(t)

(x ∗ y)(t) ≡
∫ ∞
−∞

x(t− τ)y(τ) dτ

let λ = t− τ

(x ∗ y)(t) =
∫ −∞
∞

x(λ)y(t− λ)(−dλ)

=
∫ ∞
−∞

x(λ)y(t− λ) dλ

= (y ∗ x)(t)

h(t)x(t) (x ∗ h)(t)

x(t)h(t) (h ∗ x)(t) = (x ∗ h)(t)



Properties of Convolution

Associativity.(
(x ∗ y) ∗ z

)
(t) =

(
x ∗ (y ∗ z)

)
(t)

(
(x ∗ y) ∗ z

)
(t) ≡

∫ ∞
−∞

(∫ ∞
−∞

x(t− λ− τ)y(τ) dτ
)
z(λ) dλ

let µ = λ+ τ(
(x ∗ y) ∗ z

)
(t) =

∫ ∞
−∞

(∫ ∞
−∞

x(t− µ)y(µ− λ) dµ
)
z(λ) dλ

=
∫ ∞
−∞

x(t− µ)
(∫ ∞
−∞

y(µ− λ)z(λ) dλ
)
dµ

=
(
x ∗ (y ∗ z)

)

g(t) h(t)

(g∗h)(t)

(x∗g)(t)
x(t)

(
(x∗g)∗h

)
(t)

x(t)
(
x∗(g∗h)

)
(t)



Properties of Convolution

Distributivity over addition.(
x ∗ (g + h)

)
(t) = (x ∗ g)(t) + (x ∗ h)(t)

(
x ∗ (g + h)

)
=
∫ ∞
−∞

x(t− τ)
(
g(τ) + h(τ)

)
dτ

=
∫ ∞
−∞

x(t− τ)g(τ)dτ +
∫ ∞
−∞

x(t− τ)h(τ)dτ

= (x ∗ g)(t) + (x ∗ h)(t)

g(t)

h(t)

g(t)+h(t)

+x(t)
(
x∗(g+h)(t)

)

x(t)
(
x∗(g+h)

)
(t)



Convolution

Convolution is an important computational tool.

Example: characterizing LTI systems

• Determine the unit-sample response h(t).

• Calculate the output for an arbitrary input using convolution:

y(t) = (x ∗ h)(t) =
∫ ∞
−∞

x(t− τ)h(τ) dτ



Applications of Convolution

Convolution is an important conceptual tool: it provides an important

new way to think about the behaviors of systems.

Example systems: microscopes and telescopes.



Microscope

Images from even the best microscopes are blurred.



Microscope

A perfect lens transforms a spherical wave of light from the target into a

spherical wave that converges to the image.

target image

Blurring is inversely related to the diameter of the lens.
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Microscope

Blurring can be represented by convolving the image with the optical

“point-spread-function” (3D impulse response).

target image
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Microscope

Blurring can be represented by convolving the image with the optical

“point-spread-function” (3D impulse response).

target image
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Blurring is inversely related to the diameter of the lens.



Hubble Space Telescope

Hubble Space Telescope (1990-)

http://hubblesite.org



Hubble Space Telescope

Why build a space telescope?

Telescope images are blurred by the telescope lenses AND by atmospheric

turbulence.

ha(x, y) hd(x, y)X Y

atmospheric
blurring

blur due to
mirror size

ht(x, y) = (ha ∗ hd)(x, y)X Y

ground-based
telescope



Hubble Space Telescope

Telescope blur can be respresented by the convolution of blur due to at-

mospheric turbulence and blur due to mirror size.

−2 −1 0 1 2θ −2 −1 0 1 2θ −2 −1 0 1 2θ

−2 −1 0 1 2θ −2 −1 0 1 2θ −2 −1 0 1 2θ

ha(θ)

ha(θ)

hd(θ)

hd(θ)

ht(θ)

ht(θ)

∗

∗

=

=

d = 12cm

d = 1m

[arc-seconds]



Hubble Space Telescope

The main optical components of the Hubble Space Telescope are two mir-

rors.

http://hubblesite.org



Hubble Space Telescope

The diameter of the primary mirror is 2.4 meters.

http://hubblesite.org



Hubble Space Telescope

Hubble’s first pictures of distant stars (May 20, 1990) were more blurred

than expected.

expected early Hubble

point-spread image of

function distant star

http://hubblesite.org



Hubble Space Telescope

The parabolic mirror was ground 2.2 µm too flat!

http://hubblesite.org



Hubble Space Telescope

Corrective Optics Space Telescope Axial Replacement (COSTAR): eye-

glasses for Hubble!

Hubble COSTAR



Hubble Space Telescope

Hubble images before and after COSTAR.

before after

http://hubblesite.org



Hubble Space Telescope

Hubble images before and after COSTAR.

before after

http://hubblesite.org



Hubble Space Telescope

Images from ground-based telescope and Hubble.

http://hubblesite.org



Impulse Response: Summary

The impulse response is a complete description of a CT LTI system.

One can find the response to an arbitrary input signal by convolving the

input signal with the impulse response.

The impulse response is an especially useful description of some types of

systems, e.g., optical systems, where blurring is an important figure of

merit.


