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Importance of Discrete Representations

Our goal is to develop signal processing tools that help us understand

and manipulate the world.

Model Result

World New Understanding

make model

analyze

(math, computation)

interpret results

The increasing power and decreasing cost of computation makes the

use of computation increasingly attractive.

However, many important signals are naturally described with continuous

functions, that must be sampled in order to be analyzed computationally.

Today: understand relations between continuous and sampled signals.



Sampling

How does sampling affect the information contained in a signal?

t

f(t)

0T 2T 4T 6T 8T 10T
n

f [n] = f(nT )

0 2 4 6 8 10

T = sampling interval

Notation:

We will use parentheses to denote functions of continuous domain (f(t))

and square brackets to denote functions of discrete domain (f [n]).



Effects of Sampling Are Easily Heard

Sampling Music

fs = 1
T

• fs = 44.1 kHz

• fs = 22 kHz

• fs = 11 kHz

• fs = 5.5 kHz

• fs = 2.8 kHz

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Effects of Sampling are Easily Seen

Sampling Images

original: 2048 × 1536



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 1024 × 768



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 512x384



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 256 × 192



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 128 × 96



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 64 × 48



Effects of Sampling are Easily Seen

Sampling Images

downsampled: 32 × 24



Characterizing Sampling

We would like to sample in a way that preserves information.

However, information is generally lost in the sampling process.

Example: samples provide no information about the intervening values.

t

Furthermore, information that is retained by sampling can be misleading.

Example: samples can suggest patterns not contained in the original.

t



Characterizing Sampling

We would like to sample in a way that preserves information.

However, information is generally lost in the sampling process.

Example: samples provide no information about the intervening values.

t

Furthermore, information that is retained by sampling can be misleading.

Example: samples can suggest patterns not contained in the original.

t

Samples (blue) of the original high-frequency signal (green) could just as

easily have come from a much lower frequency signal (red).



Characterizing Sampling

Our goal is to understand sampling so that we can mitigate its effects on

the information contained in the signals we process.



Check Yourself

Consider 3 CT signals:

f1(t) = cos(4000t) ; f2(t) = cos(5000t) ; f3(t) = cos(6000t)

Each of these is sampled so that

f1[n] = f1(nT ) ; f2[n] = f2(nT ) ; f3[n] = f3(nT )

where T = 0.001.

Which list goes from lowest to highest DT frequency?

0. f1[n] f2[n] f3[n] 1. f1[n] f3[n] f2[n]

2. f2[n] f1[n] f3[n] 3. f2[n] f3[n] f1[n]

4. f3[n] f1[n] f2[n] 5. f3[n] f2[n] f1[n]



Check Yourself

The CT signals are simple sinusoids:

f1(t) = cos(4000t) ; f2(t) = cos(5000t) ; f3(t) = cos(6000t)

The DT signals are sampled versions (T = 0.001):

f1[n] = cos(4n) ; f2[n] = cos(5n) ; f3[n] = cos(6n)

How does the shape of cos(Ωn) depend on Ω?



Check Yourself

As the frequency Ω increases, the shapes of the sampled signals deviate

from those of the underlying CT signals.

n

Ω = 1 : x[n] = cos(n)

n

Ω = 2 : x[n] = cos(2n)

n

Ω = 3 : x[n] = cos(3n)



Check Yourself

Worse and worse representation.ΩL

n

Ω = 4 : x[n] = cos(4n) = cos
(

(2π − 4)n
)

≈ cos(2.283n)

n

Ω = 5 : x[n] = cos(5n) = cos
(

(2π − 5)n
)

≈ cos(1.283n)

n

Ω = 6 : x[n] = cos(6n) = cos
(

(2π − 6)n
)

≈ cos(0.283n)

The same DT sequence represents many different values of Ω.



Check Yourself

For Ω > π, a lower frequency ΩL has the same sample values as Ω.

n

Ω = 4 : x[n] = cos(4n) = cos
(

(2π − 4)n
)

≈ cos(2.283n)

n

n

Ω = 5 : x[n] = cos(5n) = cos
(

(2π − 5)n
)

≈ cos(1.283n)

n

n

Ω = 6 : x[n] = cos(6n) = cos
(

(2π − 6)n
)

≈ cos(0.283n)

n

The same DT sequence represents multiple different values of Ω.



Check Yourself

Consider 3 CT signals:

f1(t) = cos(4000t) ; f2(t) = cos(5000t) ; f3(t) = cos(6000t)

Each of these is sampled so that

f1[n] = f1(nT ) ; f2[n] = f2(nT ) ; f3[n] = f3(nT )

where T = 0.001.

Which list goes from lowest to highest DT frequency? 5

0. f1[n] f2[n] f3[n] 1. f1[n] f3[n] f2[n]

2. f2[n] f1[n] f3[n] 3. f2[n] f3[n] f1[n]

4. f3[n] f1[n] f2[n] 5. f3[n] f2[n] f1[n]



Aliasing

Plot the relation between Ω (the original discrete frequency) and Ω′ which

is the apparent discrete frequency of the sampled signal.

Ω

Ω′

π 2π 3π 4π

π

2π

The first three points of the previous example fall on the line Ω′ = Ω.



Aliasing

Plot the relation between Ω (the original discrete frequency) and Ω′ which

is the apparent discrete frequency of the sampled signal.

Ω

Ω′

π 2π 3π 4π

π

2π

The first three points fall on the line Ω′ = Ω.

The next three points fall on the line Ω′ = 2π − Ω
cos

(
(2π − Ω)n

)
= cos(2πn) cos(Ωn) − sin(2πn) sin(Ωn) = cos(Ωn)



Aliasing

Plot the relation between Ω (the original discrete frequency) and Ω′ which

is the apparent discrete frequency of the sampled signal.

Ω

Ω′

π 2π 3π 4π

π

2π

The first three points fall on the line Ω′ = Ω.

The next three points fall on the line Ω′ = 2π − Ω
cos

(
(2π − Ω)n

)
= cos(2πn) cos(Ωn) − sin(2πn) sin(Ωn) = cos(Ωn)

The cosine function is periodic with period 2π.

Therefore this pattern repeats:

Ω′ = 2π + Ω
Ω′ = 4π − Ω



Aliasing

Plot the relation between Ω (the original discrete frequency) and Ω′ which

is the apparent discrete frequency of the sampled signal.

Ω

Ω′

π 2π 3π 4π

π

2π

Notice that there are an infinite number of Ω′ that produce the same

samples as Ω.

Also, every value of apparent frequency Ω′ could have come from an infinite

number of input frequencies Ω.

Most importantly, sampling a CT sinusoid results in a DT sinusoid.

The frequency may not be what we expected, but the behavior is sinusoidal!



Aliasing

We can assure a unique output at every input frequency Ω by requiring that

0 ≤ Ω′ ≤ π. We refer to this region as the baseband.

Ω

Ω′

π 2π 3π 4π

π

2π

I used baseband reconstruction to produce the sampled versions of music

in the beginning of today’s lecture.

Baseband reconstruction can be implemented by removing output frequen-

cies greater than π. The operation of removing components based on their

frequency content is called filtering.

We can use Fourier analysis to express the output signal as a sum of

sinusoids and remove sinusoids with frequencies above π.



Aliasing

The remaining distortions are (primarily) caused by input frequencies Ω > π.

These frequencies generate output frequencies Ω′ that are not desired.

Ω

Ω′

π 2π 3π 4π

π

2π

Since multiple input frequencies generate the same output frequency, we

refer to this process as aliasing.



Aliasing

We can prevent aliasing by removing input frequencies greater than π.

This is just another application of filtering.

Ω

Ω′

π 2π 3π 4π

π

2π



Anti-Aliasing Demonstration

Sampling Music

ωs = 2π
T

= 2πfs

• fs = 11 kHz without anti-aliasing

• fs = 11 kHz with anti-aliasing

• fs = 5.5 kHz without anti-aliasing

• fs = 5.5 kHz with anti-aliasing

• fs = 2.8 kHz without anti-aliasing

• fs = 2.8 kHz with anti-aliasing

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization

The information content of a signal depends not only with sample rate but

also with the number of bits used to represent each sample.
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Bit rate = (# bits/sample)×(# samples/sec)



Check Yourself

We hear sounds that range in amplitude from 1,000,000 to 1.

How many bits are needed to represent this range?

1. 5 bits

2. 10 bits

3. 20 bits

4. 30 bits

5. 40 bits



Check Yourself

How many bits are needed to represent 1,000,000:1?

bits range

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1, 024
11 2, 048
12 4, 096
13 8, 192
14 16, 384
15 32, 768
16 65, 536
17 131, 072
18 262, 144
19 524, 288
20 1, 048, 576



Check Yourself

We hear sounds that range in amplitude from 1,000,000 to 1.

How many bits are needed to represent this range? 3

1. 5 bits

2. 10 bits

3. 20 bits

4. 30 bits

5. 40 bits



Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 8 bits/sample

• 6 bits/sample

• 4 bits/sample

• 3 bits/sample

• 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin
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Quantization Demonstration

Quantizing Music

• 16 bits/sample

• 8 bits/sample

• 6 bits/sample

• 4 bits/sample

• 3 bits/sample

• 2 bit/sample

J.S. Bach, Sonata No. 1 in G minor Mvmt. IV. Presto

Nathan Milstein, violin



Quantization

We measure discrete amplitudes in bits.
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Example: high-quality audio

2 channels × 16 bits

sample
× 44, 100 samples

sec
× 60 sec

min
× 74 min ≈ 6.3 G bits

≈ 0.78 G bytes



Quantizing Images

Converting an image from a continuous representation to a discrete repre-

sentation involves the same sort of issues.

This image has 280 × 280 pixels, with brightness quantized to 8 bits.



Quantizing Images

8 bit image 7 bit image



Quantizing Images

8 bit image 6 bit image



Quantizing Images

8 bit image 5 bit image



Quantizing Images

8 bit image 4 bit image



Quantizing Images

8 bit image 3 bit image



Quantizing Images

8 bit image 2 bit image



Quantizing Images

8 bit image 1 bit image



Summary

Sampling and Discrete-Time (DT) signals.

DT signals are useful for modeling discrete sequences:

e.g., Fourier series coefficients

DT signals also allow us to analyze CT behaviors using computation,

but this kind of analysis requires sampling.

Ill-posed sampling can result in unwanted distortions, but these distortions

can be minimized.

Sinusoidal analysis provide a powerful tool for understanding and reducing

sampling artifacts.

Quantization of a signal’s amplitude can also introduce unwanted distor-

tions. We will study those distortions later in the semester.

Next Week: Discrete-Time Fourier Series


