Sounds as Signals

February 7, 2019
Tones and Sinusoids

A “tone” is a pressure that changes sinusoidally with time.

In 6.003, we will think of this as a “continuous-time” (CT) signal. In contrast, a “discrete-time” (DT) signal is a sequence of numbers.

Mathematically:

\[x(t) = A \cos(\omega t) \]
\[x[n] = A \cos(\Omega n) \]
Assume that $x[n]$ represents “samples” of $x(t)$:

$$x(t) = A \cos(\omega t)$$

$$x[n] = A \cos(\Omega n)$$

- What are the units of ω, t, Ω, and n?

Let f represent the “frequency” of the tone in cycles/second.

- Determine ω in terms of f.
- Determine Ω in terms of ω. [$\rightarrow f_s$]
- Determine Ω in terms of f.
CT and DT Representations

Assume that $x[n]$ represents “samples” of $x(t)$:

$$x(t), x[n]$$

$$x(t) = A \cos(\omega t)$$ \hspace{1cm} $$x[n] = A \cos(\Omega n)$$

- What are the units of ω, t, Ω, and n?

The product ωt is measured in units of **radians** (dimensionless ratio). Time t is measured in units of **seconds**.
Therefore ω is measured in units of **radians/second**.

The product Ωn is measured in units of **radians** (domain of $\cos(\cdot)$).
Discrete time n is a **dimensionless** integer.
Therefore Ω is measured in units of **radians**.

For convenience, we often think of n as measured in **number of samples** and Ω in **radians/sample**.
Assume that $x[n]$ represents “samples” of $x(t)$:

$$x(t), x[n]$$

$$x(t) = A \cos(\omega t) \quad x[n] = A \cos(\Omega n)$$

Let f represent the “frequency” of the tone in cycles/second.

- Determine ω in terms of f.
- Determine Ω in terms of ω. $\rightarrow f_s$
- Determine Ω in terms of f.

$$\omega [\text{rad/sec}] = 2\pi [\text{rad/cycle}] f [\text{cycles/sec}]$$

$$\Omega [\text{rad/sample}] = \frac{\omega [\text{rad/sec}]}{f_s [\text{samples/sec}]} \quad \text{where } f_s = \text{sample frequency}$$

$$\Omega [\text{rad/sample}] = \frac{2\pi [\text{rad/cycle}] f [\text{cycles/sec}]}{f_s [\text{samples/sec}]}$$
Generating Sounds

Write a program to generate a tone.

We have provided some Python utilities to manipulate digital audio: \texttt{wav_utils.py} in this week’s lab.

The function \texttt{write_wav} creates a .wav file from 3 input arguments:

- \texttt{samples}: list of discrete samples
- \texttt{sample_frequency}: in samples/second
- \texttt{filename}: of resulting .wav file
Plotting

Make a plot of the numbers in list x.

Use matplotlib.

```python
import matplotlib.pyplot as plt

Line Plot

plt.plot(x)
plt.show()

Stem Plot

plt.stem(x)
plt.show()
```
Aliasing

As the frequency Ω increases, the shapes of the sampled signals deviate from those of the underlying CT signals.

$$\Omega = 1 : x[n] = \cos(n)$$

$$\Omega = 2 : x[n] = \cos(2n)$$

$$\Omega = 3 : x[n] = \cos(3n)$$
Aliasing

Worse and worse representation.

\[\Omega = 4 : x[n] = \cos(4n) = \cos(2\pi - 4n) \approx \cos(2.283n) \]

\[\Omega = 5 : x[n] = \cos(5n) = \cos(2\pi - 5n) \approx \cos(1.283n) \]

\[\Omega = 6 : x[n] = \cos(6n) = \cos(2\pi - 6n) \approx \cos(0.283n) \]
Aliasing

For $\Omega > \pi$, a lower frequency Ω_L has the same sample values as Ω.

$\Omega = 4 : x[n] = \cos(4n) = \cos(2\pi - 4n) \approx \cos(2.283n)$

$\Omega = 5 : x[n] = \cos(5n) = \cos(2\pi - 5n) \approx \cos(1.283n)$

$\Omega = 6 : x[n] = \cos(6n) = \cos(2\pi - 6n) \approx \cos(0.283n)$

The same DT sequence represents many different values of Ω.