Deconvolution
Assume that $F[k]$ is the product of $F_a[k]$ times $F_b[k]$. Find an expression for $f[n]$ in terms of $f_a[n]$ and $f_b[n]$.

$$f[n] = \sum_{k=0}^{N-1} F[k] e^{j \frac{2\pi k}{N} n}$$

$$= \sum_{k=0}^{N-1} F_a[k] F_b[k] e^{j \frac{2\pi k}{N} n}$$

$$= \sum_{k=0}^{N-1} F_a[k] \left(\frac{1}{N} \sum_{m=0}^{N-1} f_b[m] e^{-j \frac{2\pi k}{N} m} \right) e^{j \frac{2\pi k}{N} n}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} f_b[m] \underbrace{\sum_{k=0}^{N-1} F_a[k] e^{j \frac{2\pi k}{N} (n-m)}}_{\text{would be } f_a[n-m] \text{ if } 0 \leq n-m < N}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} f_b[m] f_a[(n-m) \mod N] \equiv \frac{1}{N} \left(f_a \circledast f_b \right)[n]$$
Deconvolving as Inverse Filtering

Since (circular) convolution by $h[r, c]$ is equivalent to multiplying by $H[k_r, k_c]$, we can deconvolve by inverse filtering.

For example, if $h[r, c]$ represents blurring by circular convolution

$$f_o[r, c] = (f_i \ast h)[r, c]$$

then this blurring can be equivalently thought of as multiplication in the frequency domain:

$$F_o[k_r, k_c] = F_i[k_r, k_c]H[k_r, k_c]$$

This suggests that if we knew the blurring function, we could recover the original image from the blurred image by inverse filtering

$$F_i[k_r, k_c] = F_o[k_r, k_c]/H[k_r, k_c]$$

provided $H[k_r, k_c] \neq 0$!
Deblurring by Inverse Filtering

Consider blurring an image by circular convolution:
Consider blurring an image by circular convolution:
Inverse Filtering

Now, consider reconstructing the original image by inverse filtering:

```python
bluegill = png_read('bluegill.png')
kernel = png_read('kernel.png')

bfft = fft2(bluegill)
kfft = fft2(kernel)

cfft = bfft * kfft

convolved = ifft2(cfft)
deconved = ifft2(cfft/kfft)
show_image(deconved)
```

What will the resulting image look like?
The inverse filtered image is nearly identical to the original! Max difference between pixels $\approx 2.4 \times 10^{-14}$.

This is not surprising. Inverse filtering is equivalent to dividing by the $H[k_r, k_c]$, which exactly compensates for the blurring that results when the image is convolved with $h[r, c]$. The slight difference in the output can be explained by floating-point roundoff error.
Inverse Filtering

Now consider a slightly different version of the inverse filtering:

```python
bluegill = png_read('bluegill.png')
kernel = png_read('kernel.png')

bfft = fft2(bluegill)
kfft = fft2(kernel)

cfft = bfft * kfft
png_write(ifft2(cfft), 'blurry.png')

blurry = png_read('blurry.png')
deconved = ifft2(fft2(blurry)/kfft)
show_image(deconved)
```

What will this image look like?
Inverse Filtering

inverse filtered

:O :'(
What Happened?

Deconvolution using the convolved array directly worked great. So why was the result from the last slide so bad, when we loaded the blurry fish from an image rather than using the result of the convolution directly?
Quantization

The data we get from loading blurry.png are actually different from the data in the convolved array, by a very small amount.

This difference arises from the fact that the data are quantized when we save our PNG image.

In particular, each pixel’s brightness value is represented by an 8-bit number when saving the image; so in the resulting image, there are 256 possibilities for each pixel (and input values are rounded to the nearest of those values).
Quantization

To illustrate this phenomenon, consider the following sine wave:

Quantization introduces some amount of error:
Effect of Error on Deconvolution

Originally, viewed y as being made by circularly convolving some input x with some kernel h:

$$y[r, c] = (x \ast h)[r, c]$$

$$Y[k_r, k_c] = X[k_r, k_c]H[k_r, k_c]$$

Deconvolution:

$$X[k_r, k_c] = \frac{Y[k_r, k_c]}{H[k_r, k_c]}$$

Now instead, let \tilde{y} be the quantized output:

$$\tilde{y}[r, c] = (x \ast h)[r, c] + e[r, c]$$

$$\tilde{Y}[k_r, k_c] = X[k_r, k_c]H[k_r, k_c] + E[k_r, k_c]$$

Where $e[\cdot, \cdot]$ represents the error introduced by quantizing our output when saving to PNG.
Check Yourself

Each pixel in the blurry image is affected by quantization. Internally, we represent colors as a float in the range \([0, 1]\). When saving to PNG, those values are quantized to 8 bits (256 distinct values).

Comparing our original representation of the blurry fish to the value we read from the image, what is the maximum error \(e[r, c]\) that we could expect to see?
Check Yourself

Comparing our original representation of the blurry fish to the value we read from the image, what is the maximum error $e[r,c]$ that we could expect to see?

$$\frac{1}{512}$$

We originally have a brightness b in the range $[0,1]$. We get the quantized value by rounding to the nearest $\frac{1}{256}$.

If we imagine this is a real number (forget floating-point), rounding to the nearest $1/256$ could change our value by at most $\frac{1}{512}$.

This difference is tiny! We can’t see it. But it affects the deconvolution process.
Deconvolution

In the presence of this kind of error, what we are actually looking at as the result of our deconvolution is an approximation:

\[
X[k_r, k_c] \approx \frac{\tilde{Y}[k_r, k_c]}{H[k_r, k_c]} = \frac{Y[k_r, k_c] + E[k_r, k_c]}{H[k_r, k_c]} = X[k_r, k_c] + \frac{E[k_r, k_c]}{H[k_r, k_c]}
\]
Deconvolution

\[\tilde{X}[k_r, k_c] = X[k_r, k_c] + \frac{E[k_r, k_c]}{H[k_r, k_c]} \]

Let's look at \(H[\cdot, \cdot] \) (magnitudes on log scale):

The last term in the equation above comes about as a direct result of the quantization error. For what values of \(H[\cdot, \cdot] \) is this term maximized?
Deconvolution

\[\tilde{X}[k_r, k_c] = X[k_r, k_c] + \frac{E[k_r, k_c]}{H[k_r, k_c]} \]

Zero crossings in the DFT occur at integral multiples of \(k_r \approx 28 \) and \(k_c \approx 28 \). If the image is \(301 \times 301 \), what do we expect to see in the inverse-filtered image?
Deconvolution

\[
\tilde{X}[k_r, k_c] = X[k_r, k_c] + \frac{E[k_r, k_c]}{H[k_r, k_c]}
\]

Zero crossings in the DFT occur at integral multiples of \(k_r \approx 28\) and \(k_c \approx 28\). If the image is 301\(\times\)301, what do we expect to see in the inverse-filtered image?

We can see a periodicity (in both \(r\) and \(c\) directions) with a period of about 11 pixels. \[\frac{301}{28} \approx 10.75\]
Let’s try to minimize the effect of that error term on the output. Since the effect is worst when \(|H[k_r, k_c]|\) is smallest, we could try to get a better output by adding a constant \(m\) to the denominator before dividing:

\[
X[k_r, k_c] \approx \tilde{X}[k_r, k_c] = \frac{\tilde{Y}[k_r, k_c]}{H[k_r, k_c] + m}
\]

Goal: when \(m\) is much bigger than \(|H[k_r, k_c]|\), the denominator will be approximately \(m\); when the opposite is true, the denominator will be almost what it was before.

Predict: what will the output look like in the limits \(m \to 0\) and \(m \to \infty\)?
Results

Output when $m = 10^{-8}, 10^{-7}, 5 \times 10^{-7}, 10^{-6}, 2 \times 10^{-6}, 3 \times 10^{-6}, 4 \times 10^{-6}, 5 \times 10^{-6}, 10^{-5}$:
Improvements

\[
X[k_r, k_c] \approx \tilde{X}[k_r, k_c] = \frac{\tilde{Y}[k_r, k_c]}{H[k_r, k_c] + m}
\]

What is still missing from this approach?

Can we design something better?
Improvements

One perspective: this approach destroys the *phase* of many components, which we know to be important. So one strategy is to add not a constant, but a constant magnitude in the same direction as the existing component:

\[
X[k_r, k_c] \approx \tilde{X}[k_r, k_c] = \frac{\tilde{Y}[k_r, k_c]}{H[k_r, k_c] + m e^{j \angle H[k_r, k_c]}}
\]

Another take: the problem only really exists when \(|H[k_r, k_c]| \) is near zero. So just zero out those problematic components:

\[
X[k_r, k_c] \approx \begin{cases}
\frac{\tilde{Y}[k_r, k_c]}{H[k_r, k_c]} & \text{if } |H[k_r, k_c]| \geq \epsilon \\
0 & \text{otherwise}
\end{cases}
\]
Improvements

$x[r, c]$

inverse filtered

KEEP PHASE 2.5e-07

THRESHOLD
Sources of Noise

Noise processes can also lead to errors.

Shot (Poisson) noise: The brightness of a conventional image results from the superposition of photons. Statistical variation in the number of photons gives rise to variability in image brightness. This is most important for relatively dark images (as in telescopes). The average brightness of a pixel can be equivalent to that of 1/10 of a photon. However, every instance of that pixel must contain an integer number of photons – usually 0 or 1, but never 1/10.

Gaussian noise: A variety of processes generate additive noise that can have a Gaussian distribution. One example is electronic noise that is associated with amplification of signals (as when the output of a photosensor is amplified prior to digitization).

Quantization: To reduce the number of bits used to transmit and/or store an image, the signals associated with each pixel are often quantized. For example, 8-bit representations are popular for conventional images.
Other Issues

Worse, we often don’t actually know the kernel with which we need to deconvolve!
Real Example: Blurry Photograph

Example (Fergus, et al, 2006): try to remove blur from a photograph

name: dummy

file: original_full

state: unknown
Real Example: Blurry Photograph

We could try the approach from before, but we don’t know the kernel! How can we find it?
We could try the approach from before, but we *don’t know the kernel!* How can we find it?

<table>
<thead>
<tr>
<th>name: dummy</th>
<th>name: dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>file: eye_zoom</td>
<td>file: ken_zoom</td>
</tr>
<tr>
<td>state: unknown</td>
<td>state: unknown</td>
</tr>
</tbody>
</table>
Results

name: dummy
file: original_zoom
state: unknown
name: dummy
file: filter_zoom
state: unknown
name: dummy
file: original_full
state: unknown
name: dummy
file: filter_full
state: unknown
Summary

Deconvolution can be achieved in the frequency domain by dividing through by the DFT of the convolutional kernel.

Small amounts of noise (or other distortions) can cause big problems with naive deconvolution. We can overcome some of these effects by using something like a Wiener filter (to mitigate the noise amplification that occurs when dividing by small numbers in the frequency domain).

Additionally, we often don’t know the convolutional kernel to begin with! But work has been done in this area (“blind deconvolution”), for example:

https://cs.nyu.edu/~fergus/research/deblur.html