Last time, we introduced the notion of a **system** (or **filter**). Many applications of signal processing can be thought of as systems that convert an input signal into an output signal:

![Signal system diagram]

Examples:
- Audio enhancement: equalization, noise reduction, reverberation, echo cancellation, pitch shift (auto-tune)
- Image enhancement: smoothing, edge enhancement, unsharp masking, feature detection
- Video enhancement: image stabilization, motion magnification

LTI Systems

In 6.003, we will focus our attention on **linear, time invariant** systems.

A system is linear and time invariant if it can be expressed in terms of a linear difference equation with constant coefficients. General form:

\[
\sum_{m} c_m y[n - m] = \sum_{k} d_k x[n - k]
\]

Additivity: output of sum is sum of outputs
Homogeneity: scaling an input scales its output
Time invariance: delaying an input delays its output
Unit Sample Response

If a system is linear and time-invariant, its input-output relation is completely specified by its unit sample response $h[n]$. The unit-sample response $h[n]$ is the output of the system when the input is the unit-sample signal $\delta[n]$:

$$
\delta[n] \xrightarrow{\text{system}} h[n]
$$

The output for more complicated inputs can be computed by summing scaled and shifted versions of the unit-sample response.

Superposition

In general, we can represent a signal as a sum of scaled, shifted deltas:

$$
x[n] = \sum_{m=-\infty}^{\infty} x[m] \delta[n-m] = \ldots + x[-1] \delta[n+1] + x[0] \delta[n] + x[1] \delta[n-1] + x[2] \delta[n-2] + \ldots
$$

If $h[\cdot]$ is the unit sample response of an LTI system, then the output of that system in response to this arbitrary input $x[n]$ can be viewed as a sum of scaled, shifted unit sample responses:

$$
y[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m] = \ldots + x[-1] h[n+1] + x[0] h[n] + x[1] h[n-1] + x[2] h[n-2] + \ldots
$$

Convolution: Summary

Unit-sample response $h[\cdot]$ is a complete description of an LTI system:

$$
x[n] \xrightarrow{h[\cdot]} y[n]
$$

Given $h[n]$ one can compute the response $y[n]$ to any input $x[n]$:

$$
y[n] = (x * h)[n] \equiv \sum_{m=-\infty}^{\infty} x[m] h[n-m]
$$
Frequency Representation of Convolution

Let $y[n] = (x * h)[n]$. Find $Y(\Omega)$.

\[
Y(\Omega) = \sum_{n=-\infty}^{\infty} (h * x)[n]e^{-j\Omega n}
\]
\[
= \sum_{n=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} h[m]x[n-m] \right) e^{-j\Omega n}
\]
\[
= \sum_{m=-\infty}^{\infty} h[m] \sum_{l=-\infty}^{\infty} x[l]e^{-j\Omega(l+m)}
\]
\[
= \sum_{m=-\infty}^{\infty} h[m]e^{-j\Omega m} \sum_{l=-\infty}^{\infty} x[l]e^{-j\Omega l}
\]
\[
= H(\Omega)X(\Omega)
\]

Convolution in time is multiplication in frequency!

Filtering

We can view filtering in both the time and frequency domains:

Time Domain:

\[
x[n] \rightarrow h[n] \rightarrow y[n] = (h * x)[n]
\]

Frequency Domain:

\[
X(\Omega) \rightarrow H(\Omega) \rightarrow Y(\Omega) = H(\Omega)X(\Omega)
\]

Each frequency component of input $X(\Omega)$ is scaled by a factor $H(\Omega)$, which can be possibly complex.

The system is completely described by the set of scale factors $H(\Omega)$, which we refer to as the **frequency response** of the system.

Today

Today: effects of filtering in the frequency domain.
Check Yourself!

Consider the system described by:

\[y[n] = \frac{x[n-1] + x[n] + x[n+1]}{3} \]

Sketch this system's response to the following input:

\[x[n] = \delta[n-1] + 2\delta[n-2] + 3\delta[n-3] \]

Surprise!
Eigenfunctions and Eigenvalues

If the output signal is a scalar multiple of the input signal, we refer to the signal as an **eigenfunction**, and the multiplier as the **eigenvalue**.

$$x[n] \xrightarrow{\text{system}} \lambda x[n]$$

Complex Exponentials

Complex exponentials are eigenfunctions of LTI systems. If $h[n]$ is a system’s unit sample response, and $x[n] = e^{j\Omega n}$, then the system’s output is:

$$y[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$
$$= \sum_{m=-\infty}^{\infty} h[m]e^{j\Omega(n-m)}$$
$$= \sum_{m=-\infty}^{\infty} h[m]e^{j\Omega n}e^{-j\Omega m}$$
$$= e^{j\Omega n}\sum_{m=-\infty}^{\infty} h[m]e^{-j\Omega m}$$
$$= e^{j\Omega n}H(\Omega)$$

The eigenvalues $H(\Omega)$ are generally complex-valued, and so affect both the amplitude and phase of the output:

$$e^{j\Omega n} \xrightarrow{\text{system}} |H(\Omega)|e^{j\Omega n}e^{-j\Omega n}H(\Omega)$$

Notes
Response to Eternal Sinusoids

If \(h[n] \) is purely real, we have \(H(\Omega) = H^*(-\Omega) \).
Consider \(x[n] = \cos(\Omega n) \) (for all \(n \)), which can be written as:
\[
x[n] = \frac{1}{2} (e^{j\Omega n} + e^{-j\Omega n})
\]
Then:
\[
y[n] = \frac{1}{2} (H(\Omega)e^{j\Omega n} + H(-\Omega)e^{-j\Omega n})
\]
\[
= \text{Re} \left(H(\Omega)e^{j\Omega n} \right)
\]
\[
= \text{Re} \left(H(\Omega)e^{j(\Omega n + \angle H(\Omega))} \right)
\]
\[
y[n] = |H(\Omega)| \cos(\Omega n + \angle H(\Omega))
\]
Output in response to a pure cosine is a (scaled, shifted) pure cosine at the same frequency!

Check Yourself!

Consider the moving average filter from before:
\[
y[n] = \frac{x[n-1] + x[n] + x[n+1]}{3}
\]
What is this system’s frequency response?
Does this agree with the input/output relationship we see?

Example: Bass Boost

Let’s take a look at taking a song and boosting its low frequencies.

First subproblem: isolate the low frequencies (by attenuating high frequencies).
Check Yourself!

Let \(x[\cdot] \) be our original input, and \((x * h_L)[\cdot] \) represent a low-passed version of \(x[\cdot] \).

We want to use a single convolution to produce a new signal with the high frequencies still present, but the low frequencies amplified:

\[
(x * h_B)[n] = x[n] + c(x * h_L)[n]
\]

Find an expression for \(h_B[n] \).

“Ideal” Filters

So far, we have seen one example of designing a filter to accomplish a task, based on a desired frequency response. For the rest of the day, we will consider some examples of idealized filters, and think about their representations in the time and frequency domains.

The “Ideal” Low-Pass Filter

Consider a system characterized by the following purely real frequency response:

\[
H(\Omega) = \begin{cases} 1 & \text{for } |\Omega| < \Omega_c \\ 0 & \text{otherwise} \end{cases}
\]

Such a system is called a **low-pass filter**, because it allows low frequencies to pass through unmodified, while attenuating high frequencies.

We could apply this filter to a signal by multiplying the DTFT of that signal by the values above. But we could also apply the filter by operating in the time domain.
An “Ideal” Band-Pass Filter

Consider a different filter, which is designed to pass frequencies in a band centered around Ω_b, which is not necessarily zero. Its frequency response is shown below:

If we wanted to apply this filter by operating in the time domain, what $h[n]$ would we convolve our input with?

Summary

Today, focused on frequency response.
- characterize system by responses to complex exponentials
- designed a filter to have a particular frequency response
- discussed examples of idealized filters, time and frequency representations