6.003 Signal Processing

Week 4, Lecture B:

Fourier Transform Properties, Duality

Adam Hartz
hz@mit.edu

Quiz 1

Thursday, 7 March, 2:05-3:55pm, 50-340 (Walker Gym).
No lecture on 7 March or 5 March.
5 March: extra office hours 2-5pm.
The quiz is closed book.
No electronic devices (including calculators).
You may use one $8.5 \times 11^{\prime \prime}$ sheet of notes (handwritten or printed, front and back).

Coverage: lectures, recitations, homeworks, and labs up to and including March 5.

Practice materials have been posted to the web.

Last Time: Fourier Transform

Last time, we extended Fourier analysis to aperiodic signals by introducing CTFT and DTFT:

CTFT

$$
\begin{gathered}
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega \\
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
\end{gathered}
$$

DTFT

$$
\begin{gathered}
x[n]=\frac{1}{2 \pi} \int_{2 \pi} X(\Omega) e^{j \Omega n} d \Omega \\
X(\Omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}
\end{gathered}
$$

Last Time: FT of Square Pulse

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-1}^{1} e^{-j \omega t} d t=\frac{2 \sin (\omega)}{\omega}
$$

Square Pulse

The value of $X(0)$ is the integral of $x(t)$ over all time:

$$
X(0)=\int_{-\infty}^{\infty} x(t) e^{-j 0 t} d t=\int_{-1}^{1} d t=2
$$

Square Pulse

The value of $x(0)$ is the integral of $X(\omega)$ over all frequencies, divided by 2π :

$$
x(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega 0} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) d \omega
$$

Stretching Time

Stretching time compresses frequency and increases amplitude (preserving area).

Compressing Time to the Limit

Alternatively, compress time while keeping area $=1$:

In the limit, the pulse has zero width but still area 1!
We represent this limit with the delta function: $\delta(\cdot)$.

$\delta(\cdot)$ only has nonzero area, but it has finite area: it is most easily described via an integral:

$$
\int_{-\infty}^{\infty} \delta(t) d t=\int_{0_{-}}^{0_{+}} \delta(t) d t=1
$$

Importantly, it has the following property (the "sifting property"):

$$
\int_{-\infty}^{\infty} \delta(t-a) f(t) d t=f(a)
$$

Example: FT of complex exponential

Consider finding the FT of

$$
x(t)=e^{j 4 t}
$$

We need $X(\omega)$ such that

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega=e^{j 4 t}
$$

Using the sifting property of the delta function, we find:

$$
X(\omega)=2 \pi \delta(\omega-4)
$$

Check Yourself!

What is the FT of the following function?

$$
x(t)=2 \cos (t)
$$

DT impulse: $\delta[\cdot]$
DT equivalent is

$$
\delta[n]= \begin{cases}1 & \text { if } n=0 \\ 0 & \text { otherwise }\end{cases}
$$

which still has the "sifting property:"

$$
\sum_{n=-\infty}^{\infty} \delta[n-a] f[n]=f[a]
$$

Check Yourself!

The FT of a square pulse is a "sinc" function:

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-S}^{S} e^{-j \omega t} d t=\frac{2 \sin (S \omega)}{\omega}
$$

Find the time function whose Fourier transform is:

Check Yourself!

Find the time function whose Fourier transform is:

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\omega_{0}}^{\omega_{0}} e^{j \omega t} d \omega-=\frac{\sin \left(\omega_{0} t\right)}{\pi t}
$$

Duality

The Fourier transform and its inverse are symmetric!

$$
\begin{gathered}
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
\end{gathered}
$$

except for the minus sign in the exponential, and the 2π factor.

Duality

The Fourier transform and its inverse are symmetric!

$$
\begin{gathered}
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
\end{gathered}
$$

except for the minus sign in the exponential, and the 2π factor.

So, in general, we can say that:

If $x(t)$ has Fourier transform $X(\omega)$, then $X(t)$ has Fourier transform $2 \pi x(-\omega)$.

Duality

Verifying duality:

$$
\begin{aligned}
2 \pi x(-\omega) & \stackrel{?}{=} \mathrm{FT}\{X(t)\} \\
2 \pi x(-\omega) & \stackrel{?}{=} \int X(t) e^{-j \omega t} d t \\
x(-\omega) & \stackrel{?}{=} \frac{1}{2 \pi} \int X(t) e^{-j \omega t} d t \\
x(\omega) & \stackrel{?}{=} \frac{1}{2 \pi} \int X(t) e^{-j(-\omega) t} d t \\
x(t) & =\frac{1}{2 \pi} \int X(\omega) e^{j \omega t} d \omega
\end{aligned}
$$

Duality

Consequence of duality: "transform pairs"

FT Properties

Duality can often be used to simplify analysis.

Additionally, we can show that certain time-domain operations have equivalent operations in the frequency domain, which can aid the analysis of new signals.

CTFT Properties: Linearity

Consider

$$
x(t)=A x_{1}(t)+B x_{2}(t)
$$

Then:

$$
\begin{aligned}
X(\omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty}\left(A x_{1}(t)+B x_{2}(t)\right) e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty}\left(A x_{1}(t) e^{-j \omega t}+B x_{2}(t) e^{-j \omega t}\right) d t \\
& =\int_{-\infty}^{\infty} A x_{1}(t) e^{-j \omega t} d t+\int_{-\infty}^{\infty} B x_{2}(t) e^{-j \omega t} d t \\
& =A X_{1}(\omega)+B X_{2}(\omega)
\end{aligned}
$$

CTFT Properties: Time Reversal

Consider

$$
y(t)=x(-t)
$$

Then:

$$
Y(\omega)=\int_{-\infty}^{\infty} x(-t) e^{-j \omega t} d t
$$

substitute $u=-t$

$$
\begin{aligned}
& =\int_{\infty}^{-\infty} x(u) e^{-j \omega(-u)}(-d u) \\
& =\int_{-\infty}^{\infty} x(u) e^{-j \omega(-u)} d u \\
& =\int_{-\infty}^{\infty} x(u) e^{-j(-\omega) u} d u \\
& =X(-\omega)
\end{aligned}
$$

CTFT Properties: Time Delay

Consider

$$
y(t)=x\left(t-t_{0}\right)
$$

Then:

$$
Y(\omega)=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-j \omega t} d t
$$

substitute $u=t-t_{0}$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x(u) e^{-j \omega\left(u+t_{0}\right)} d u \\
& =\int_{-\infty}^{\infty} x(u) e^{-j \omega u} e^{-j \omega t_{0}} d u \\
& =e^{-j \omega t_{0}} \int_{-\infty}^{\infty} x(u) e^{-j \omega u} d u \\
& =e^{-j \omega t_{0}} X(\omega)
\end{aligned}
$$

CTFT Properties: Conjugation

Consider

$$
y(t)=x^{*}(t)
$$

Then:

$$
\begin{aligned}
& Y(\omega)=\int_{-\infty}^{\infty} y(t) e^{-j \omega t} d t \\
& Y(\omega)=\int_{-\infty}^{\infty} x^{*}(t) e^{-j \omega t} d t \\
& Y(\omega)=\int_{-\infty}^{\infty} x^{*}(t) e^{j(-\omega) t} d t \\
& Y(\omega)=X^{*}(-\omega)
\end{aligned}
$$

CTFT Properties: Scaling Time

Consider

$$
y(t)=x(A t)
$$

with $A>0$ (not flipping in time)
Then:

$$
Y(\omega)=\int_{-\infty}^{\infty} x(A t) e^{-j \omega t} d t
$$

substitute $u=A t$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x(u) e^{-j \omega \frac{u}{A}} \frac{d u}{A} \\
& =\int_{-\infty}^{\infty} x(u) e^{-j \frac{\omega}{A} u} \frac{d u}{A} \\
& =\frac{1}{A} \int_{-\infty}^{\infty} x(u) e^{-j \frac{\omega}{A} u} d u \\
& =\frac{1}{A} X\left(\frac{\omega}{A}\right)
\end{aligned}
$$

CTFT Properties: Time Derivative

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
$$

differentiate both sides w.r.t t

$$
\begin{aligned}
& \frac{\mathrm{d} x(t)}{\mathrm{d} t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega)\left(j \omega e^{j \omega t}\right) d \omega \\
& \frac{\mathrm{~d} x(t)}{\mathrm{d} t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}(j \omega X(\omega)) e^{j \omega t} d \omega
\end{aligned}
$$

This shows that the Fourier transform of $\frac{\mathrm{d} x(t)}{\mathrm{d} t}$ is $j \omega X(\Omega)$ Consequently, the FT of $\int x(t) d t$ is $\frac{1}{j \omega} X(\omega)$

CTFT Properties: Frequency Derivative

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

differentiate both sides w.r.t ω

$$
\begin{aligned}
& \frac{\mathrm{d} X(\omega)}{\mathrm{d} \omega}=\int_{-\infty}^{\infty} x(t)\left(-j t e^{-j \omega t}\right) d t \\
& \frac{\mathrm{~d} X(\omega)}{\mathrm{d} \omega}=\int_{-\infty}^{\infty}(-j t x(t)) e^{-j \omega t} d t
\end{aligned}
$$

multiply both sides by j

$$
j \frac{\mathrm{~d} X(\omega)}{\mathrm{d} \omega}=\int_{-\infty}^{\infty}(t x(t)) e^{-j \omega t} d t
$$

This shows that the Fourier transform of $t x(t)$ is $j \frac{d X(\omega)}{d \omega}$

Table of CTFT Properties

Property	$y(t)$	$Y(\omega)$

Linearity
Time reversal

Time Delay
Conjugation
Scaling Time

Time Derivative

Frequency Derivative

$$
A x_{1}(t)+B x_{2}(t) \quad A X_{1}(\omega)+B X_{2}(\omega)
$$

$$
x(-t) \quad X(-\omega)
$$

$$
x\left(t-t_{0}\right)
$$

$$
e^{-j \omega t_{0}} X(\omega)
$$

$$
x^{*}(t)
$$

$$
X^{*}(-\omega)
$$

$$
x(A t)
$$

$$
\frac{1}{|A|} X\left(\frac{\omega}{A}\right)
$$

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}
$$

$$
j \omega X(\omega)
$$

$$
j \frac{\mathrm{~d}}{\mathrm{~d} \omega} X(\omega)
$$

Table of DTFT Properties

Property

$y[n]$
$Y(\Omega)$

Linearity
Time reversal

Time Delay
Conjugation

Frequency Derivative

$$
A x_{1}[n]+B x_{2}[n] \quad A X_{1}(\Omega)+B X_{2}(\Omega)
$$

$$
x(-n)
$$

$$
X(-\Omega)
$$

$$
x\left(n-n_{0}\right)
$$

$$
e^{-j \Omega n_{0}} X(\Omega)
$$

$$
x^{*}[n]
$$

$$
X^{*}(-\Omega)
$$

$n x[n]$

Example: Using Properties

Consider again finding the FT of the function shown below:

Using properties can simplify the analysis!

Example: Using Properties

Consider finding the Fourier transform of $x(t)=2 t e^{-3|t|}$, shown below:

Using properties can simplify the analysis!

