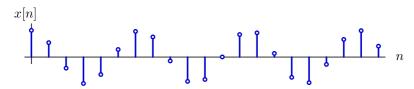
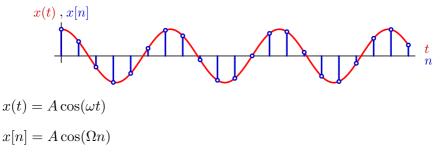

6.3000: Signal Processing


Sampling and Aliasing

Tones and Sinusoids

A "tone" is a pressure that changes sinusoidally with time.

In 6.3000, we will think of this as a "continuous-time" (CT) signal. In contrast, a "discrete-time" (DT) signal is a sequence of numbers.


Mathematically:

$$x(t) = A\cos(\omega t)$$

$$x[n] = A\cos(\Omega n)$$

CT and DT Representations

Assume that x[n] represents "samples" of x(t):

• What are the units of ω , t, Ω , and n?

Let f represent the "frequency" of the tone in cycles/second.

- Determine ω in terms of f.
- Determine Ω in terms of ω .
- Determine Ω in terms of f.

Check Yourself

Compare two signals:

$$x_1[n] = \cos \frac{3\pi n}{4}$$

$$x_2[n] = \cos\frac{5\pi n}{4}$$

How many of the following statements are true?

 $x_1[n]$ has period N=8.

 $x_1[n] = x_2[n].$

 $x_2[n]$ has period N=8.

Frequencies

Consider the following CT signal:

$$f(t) = 6\cos(42\pi t) + 4\cos(18\pi t - 0.5\pi)$$

What is the fundamental period of this signal?

Frequencies

Now imagine that this same signal

$$f(t) = 6\cos(42\pi t) + 4\cos(18\pi t - 0.5\pi)$$

is sampled with a sampling rate of $f_s=60\,{\rm Hz}$ to obtain a discrete-time signal f[n], which is periodic in n with fundamental period N.

Determine the DT frequency components of f[n].

Frequencies

The DT signal

$$f[n] = 6\cos(42\pi \frac{n}{60}) + 4\cos(18\pi \frac{n}{60} - 0.5\pi)$$

has a fundamental period of ${\cal N}=20.$ However, this signal is also periodic in ${\cal N}=80.$

Which discrete frequencies are present if we reanalyze with N=80?

Tones in Python

Determine EXPR1 and EXPR2 below to generate a $1000\,\mathrm{Hz}$ cosine tone using a sampling rate of $44,100\,\mathrm{samples/second}$. The tone should last 2.5 seconds.

```
import math
from lib6003.audio import wav_write
f = [cos(EXPR1 * n) for n in range(0, EXPR2)]
wav_write(f, 44100, 'output.wav')
```