6.300: Signal Processing

Final Exam Practice Problems #1

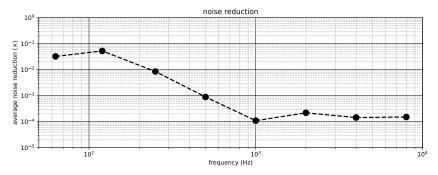
- Final Exam: Johnson Track on Friday, 12/19 at 1:30 p.m.
- Bring three $8.5'' \times 11.0''$ pages (six sides) of handwritten notes.

Fill out the survey on the course website.

https://sigproc.mit.edu/fall25/survey

Fill out a subject evaluation for this class.

https://registrar.mit.edu/classes-grades-evaluations/subject-evaluation

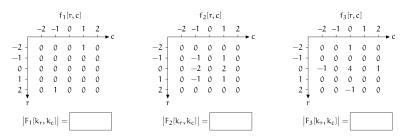

Noise Reduction

My neighbor plays loud music at night while I'm trying to read. So, I bought a pair of noise-reducing ear muffs at Micro Center last weekend. Here are numbers from the back of the package:

frequency	average reduction	
63 Hz	14.9 dB	$\times 10^{-1.49}$
120 Hz	12.8 dB	$\times 10^{-1.28}$
250 Hz	20.7 dB	$\times 10^{-2.07}$
500 Hz	30.5 dB	$\times 10^{-3.05}$
1,000 Hz	39.6 dB	$\times 10^{-3.96}$
2,000 Hz	36.6 dB	$\times 10^{-3.66}$
4,000 Hz	38.4 dB	$\times 10^{-3.84}$
8,000 Hz	38.2 dB	$\times 10^{-3.82}$

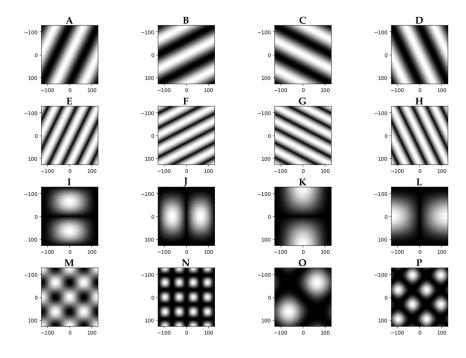
Noise Reduction

Magnitude of frequency response on log-log scale:

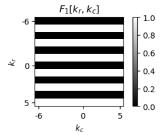


Approximately a low-pass filter? Approximately a high-pass filter? More quantitative problems up next:

- Impulsive Images
- Plaid Patterns


Impulsive Images

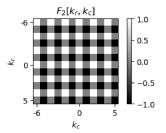
Pixel values for $f_1[r, c]$, $f_2[r, c]$, and $f_3[r, c]$ are shown below for $|r| \le 2$ and $|c| \le 2$. Pixel values outside the indicated regions are zero.



Match $f_i[r, c]$ to the image on the next page that shows $|F_i[k_r, k_c]|$, the magnitude of its 2D DFT, computed for $-128 \le r, c < 128$.

In each image, black represents the minimum magnitude and white represents the maximum magnitude.

- (a) Consider the 12 \times 12 2D DFT $F_1[k_r, k_c]$ shown below.
- white = 1, black = 0

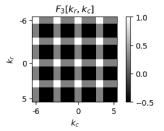


Determine a closed-form expression for the 2D signal $f_1[r,c]$.

 $f_1[r, c] =$

(**b**) Consider the 12 \times 12 2D DFT $F_2[k_r, k_c]$ shown below.

• white = 1, gray = 0, black = -1

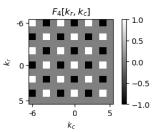


Determine a closed-form expression for the 2D signal $f_2[r,c]$.

 $f_2[r, c] =$

(c) Consider the 12 × 12 2D DFT $F_3[k_r, k_c]$ shown below.

• white = 1, gray = 1/4, black = -1/2



Determine a closed-form expression for the 2D signal $f_3[r,c]$.

 $f_3[r, c] =$

(d) Consider the 12 \times 12 2D DFT $F_4[k_r, k_c]$ shown below.

• white = 1, gray = 0, black = -1

Determine a closed-form expression for the 2D signal $f_4[r,c]$.

 $f_4[r, c] =$