6.3000: Signal Processing

Fourier Series Trig Form

Representing Signals as Fourier Series

- Synthesis: making a signal from components
- Analysis: finding the components

Start With Some Basic Transformations

How many images match the expressions beneath them?

Fourier Series

Fourier representations are a major theme of this subject.

The basic ideas were described in lecture:

Synthesis Equation (making a signal from components):

$$f(t) = f(t+T) = c_0 + \sum_{k=1}^{\infty} c_k \cos\left(\frac{2\pi kt}{T}\right) + \sum_{k=1}^{\infty} d_k \sin\left(\frac{2\pi kt}{T}\right)$$

Analysis Equations (finding the components):

$$c_0 = \frac{1}{T} \int_T f(t) dt$$

$$c_k = \frac{2}{T} \int_T f(t) \cos\left(\frac{2\pi kt}{T}\right) dt \; ; \quad k \ge 1$$

$$d_k = \frac{2}{T} \int_T f(t) \sin\left(\frac{2\pi kt}{T}\right) dt \; ; \quad k \ge 1$$

Warm Up

Find the Fourier series coefficients $(c_k \text{ and } d_k)$ for

$$f(t) = \cos(t)$$

Fourier Series Coefficients

How many of the following functions have **exactly one** non-zero Fourier series coefficient?

- $\bullet \quad f_1(t) = \cos^2 t$
- $\bullet \quad f_2(t) = \sin t \cos t$
- $\bullet \quad f_3(t) = 4\cos^3 t 3\cos t$
- $f_4(t) = \cos(12t)\cos(4t)\cos(2t)$

Rectified Sine Wave

Consider a Fourier series representation of the following function.

- What is the approximate value of c_0 ?
- Which non-DC Fourier coefficient has the largest absolute value?
 What's the sign of that coefficient?
- Determine an expression for the Fourier coefficients of f(t).
- Compute the sum of the first 100 terms in the Fourier series of f(t).

Verify Fourier Series of Rectified Sine Wave Numerically

Compute the sum of the first 100 terms in the Fourier series of f(t).

Trig Table

```
sin(a+b) = sin(a) cos(b) + cos(a) sin(b)
sin(a-b) = sin(a) cos(b) - cos(a) sin(b)
cos(a+b) = cos(a) cos(b) - sin(a) sin(b)
cos(a-b) = cos(a) cos(b) + sin(a) sin(b)
tan(a+b) = (tan(a)+tan(b))/(1-tan(a) tan(b))
tan(a-b) = (tan(a)-tan(b))/(1+tan(a) tan(b))
sin(A) + sin(B) = 2 sin((A+B)/2) cos((A-B)/2)
sin(A) - sin(B) = 2 cos((A+B)/2) sin((A-B)/2)
cos(A) + cos(B) = 2 cos((A+B)/2) cos((A-B)/2)
cos(A) - cos(B) = -2 sin((A+B)/2) sin((A-B)/2)
sin(a+b) + sin(a-b) = 2 sin(a) cos(b)
sin(a+b) - sin(a-b) = 2 cos(a) sin(b)
cos(a+b) + cos(a-b) = 2 cos(a) cos(b)
cos(a+b) - cos(a-b) = -2 sin(a) sin(b)
2 \cos(A) \cos(B) = \cos(A-B) + \cos(A+B)
2 \sin(A) \sin(B) = \cos(A-B) - \cos(A+B)
2 \sin(A) \cos(B) = \sin(A+B) + \sin(A-B)
2 \cos(A) \sin(B) = \sin(A+B) - \sin(A-B)
```