6.3000: Signal Processing

Discrete Fourier Transform

synthesis

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi k}{N}n}$$

$$x[n] = \sum_{k=0}^{N-1} X[k]e^{j\frac{2\pi k}{N}n}$$

 $x[n] = \sum X[k]e^{j\frac{2\pi k}{N}n}$

$$X[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j\frac{2\pi k}{N}n}$$

$$x[n] = \frac{1}{2\pi} \int_{\Omega} X(\Omega) e^{j\Omega n} d\Omega$$

DTFT:
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

Analyzing Frequency Content of Arbitrary Signals

Why use a DFT?

- Fourier Series: conceptually simple, but limited to periodic signals.
- ullet Fourier Transforms: arbitrary signals, but continuous domain (Ω)
 - good for theory; not so good for numerical evaluation
- ullet Discrete Fourier Transform: arbitrary DT signals, discrete domain (k)
 - good for computation \rightarrow broadly used in "Digital Signal Processing"

Today: using the DFT to analyze frequency content of a signal.

Create four signals

$$x_1[n] = \cos(8\pi n/100)$$

$$x_2[n] = \cos(8\pi n/100 - \pi/4)$$

$$x_3[n] = \cos(9\pi n/100)$$

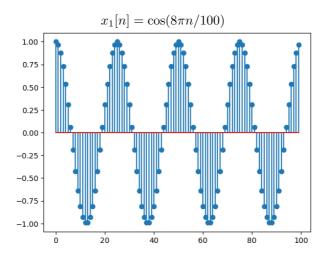
$$x_4[n] = \cos(9\pi n/100 - \pi/2)$$

each with a duration of 1 second when the sample frequency is $44,100\,\mathrm{Hz}.$

Compare the DFTs of the first 100 samples of each of these signals.

Python Code

```
from math import cos, pi
from lib6003.audio import wav_write
from matplotlib.pyplot import stem, show
fs = 44100
x1 = [\cos(8*pi*n/100) \text{ for n in range(fs)}]
x2 = [\cos(8*pi*n/100-pi/4) \text{ for n in range(fs)}]
x3 = [\cos(9*pi*n/100) \text{ for n in range(fs)}]
x4 = [\cos(9*pi*n/100-pi/2) \text{ for n in range(fs)}]
wav write(x1,fs,'x1.wav')
wav write(x2,fs,'x2.wav')
wav write(x3,fs,'x3.wav')
wav write(x4,fs,'x4.wav')
stem(x1[0:100])
show()
```



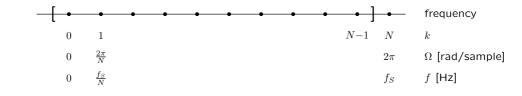
What is the frequency of this tone if the sample rate is $44,100\,\mathrm{Hz}$?

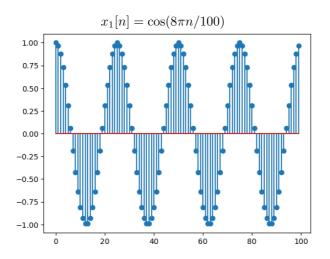
What is the frequency of the tone generated by $x_1[n]$?

Since $x_1[n]=\cos(8\pi n/100)$, we know that the discrete frequency $\Omega_1=\frac{8\pi}{100}$. Furthermore, the sample frequency $f=f_s$ corresponds to the maximum discrete frequency $\Omega=2\pi$, and frequencies f in Hz are proportional to discrete frequencies Ω .

$$\frac{f}{f_s} = \frac{\Omega}{2\pi}$$

So
$$f=rac{\Omega f_s}{2\pi}=rac{8\pi/100}{2\pi} imes44,100\,\mathrm{Hz}=1764\,\mathrm{Hz}$$





Write a program to calculate the DFT of an input sequence. Use that program to calculate $X_1[k]$, which is the DFT of the first 100 samples of $x_1[n]$.

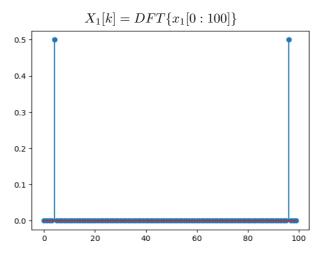
Write a program to calculate the DFT of an input sequence.

Use that program to calculate $X_1[k]$, which is the DFT of the first 100 samples of $x_1[n]$.

```
def dft(x):
    N = len(x)
    answer = [0 for k in range(N)]
    for k in range(N):
        for n in range(N):
            answer[k] += (1/N)*x[n]*e**(-2j*pi*k*n/N)
    return answer
```

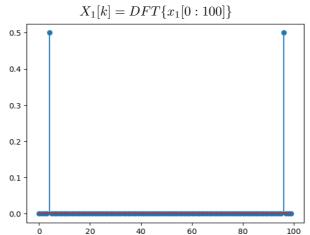
```
X1 = dft(x1[0:100])
```

Plot the magnitude of $X_1[\cdot]$.



Which values of k are non-zero?

Plot the magnitude of $X_1[\cdot]$.



Which values of k are non-zero?

$$k = \frac{\Omega N}{2\pi} = \frac{8\pi}{100} \times \frac{100}{2\pi} = 4$$

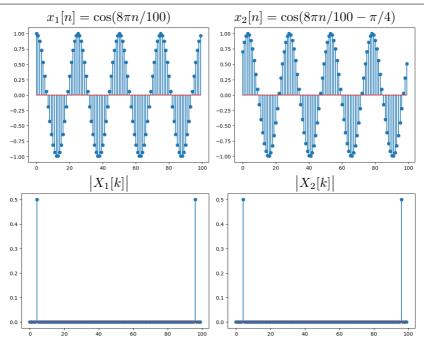
k=-4 is also non-zero (Euler's formula).

Also k=100-4=96 is non-zero since $\boldsymbol{X}[k]$ is periodic in N.

How will plots of DFT magnitudes differ for the following signals?

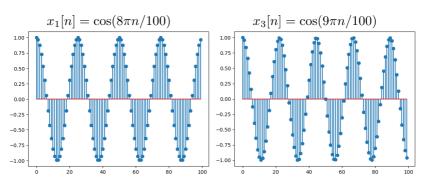
$$x_1[n] = \cos(8\pi n/100)$$

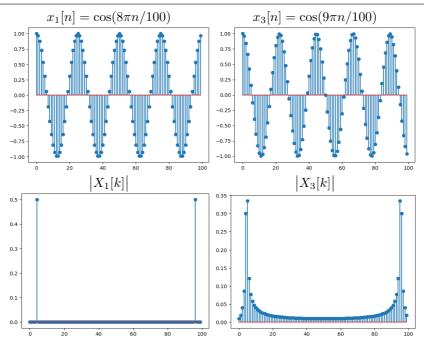
$$x_2[n] = \cos(8\pi n/100 - \pi/4)$$



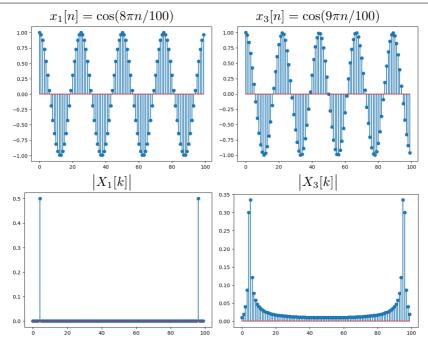
No difference in magnitudes (but the phases are different).

How will plots of DFT magnitudes differ for the following signals?



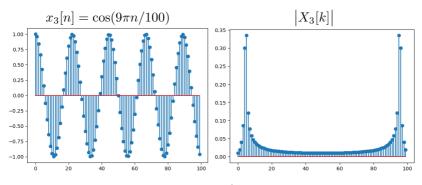


Why are these DFTs so different?



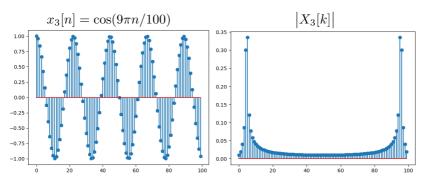
 $\Omega_1 \neq \Omega_3$. Even more importantly, $x_3[n]$ is not periodic in N=100!

This blurring occurs because the signal is not periodic in the analysis window (N=100).



What value of k corresponds to $\Omega = 9\pi/100$?

This blurring occurs because the signal is not periodic in the analysis window (N=100).



What value of k corresponds to $\Omega = 9\pi/100$?

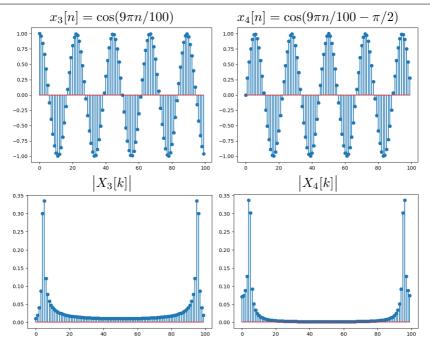
$$\Omega = 9\pi/100 = 2\pi k/N$$

$$k = 4.5$$

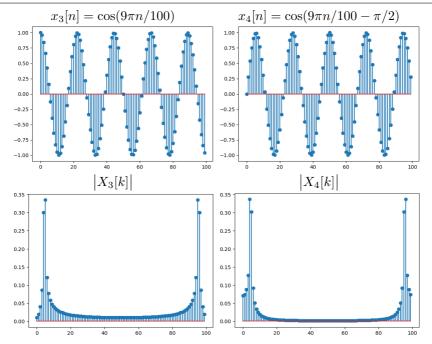
The signal frequency fell between the analysis frequencies.

How will plots of DFT magnitudes differ for the following signals?

- $x_3[n] = \cos(9\pi n/100)$
- $x_4[n] = \cos(9\pi n/100 \pi/2)$

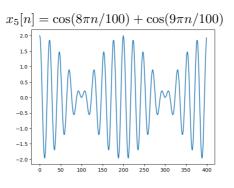


 $\Omega_3=\Omega_4.$ But DC bigger: 5 positive half cycles versus 4 negative ones.

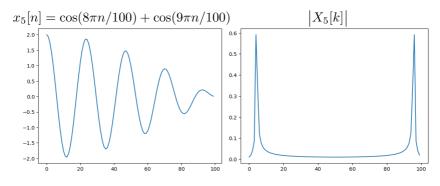


High freq. content of X_4 smaller than X_3 : $|x_4[99]-x_4[0]|<|x_3[99]-x_3[0]|$

What is the minimum window size N needed to resolve $\Omega=8\pi/100$ from $9\pi/100?$

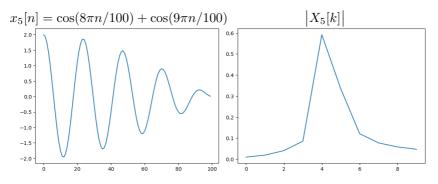


If the analysis window is small (here $N{=}100$), the two frequencies $8\pi/100$ and $9\pi/100$ generate a single peak in the DFT at k=4 (along with its partner at $k=100{-}4=96$).



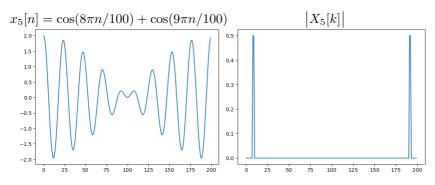
Two frequencies can look like one if analysis window is too small.

N=100 zoomed



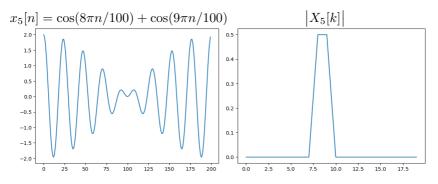
Two frequencies can look like one if analysis window is too small.

$$N = 200$$



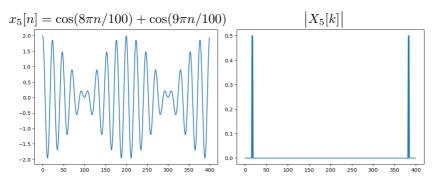
Two frequencies can look like one if analysis window is too small.

N=200 zoomed



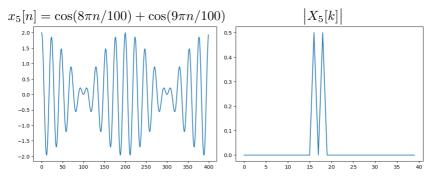
Two frequencies can look like one if analysis window is too small.

$$N = 400$$



Two frequencies can look like one if analysis window is too small.

 $N=400 \; {\rm zoomed}$



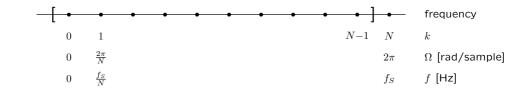
These frequencies are clearly resolved with N=400.

Frequency Scales

We can think of the DFT as having spectral resolution of $(2\pi/N)$ radians, which is equivalent to (f_S/N) Hz.

The time window is divided into N samples numbered n=0 to N-1.

Discrete frequencies are similarly numbered as k = 0 to N-1.



Two frequencies are resolved if they are separated by more than $\frac{2\pi}{N}$.

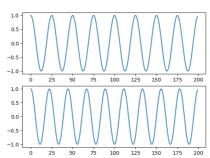
 $\Omega_1=rac{8\pi}{100}$ and $\Omega_2=rac{9\pi}{100}$ will be resolved if

$$\Delta\Omega = \Omega_2 - \Omega_1 = \frac{9\pi}{100} - \frac{8\pi}{100} = \frac{\pi}{100} > \frac{2\pi}{N}$$

That is, if N > 200.

We can think of $\frac{2\pi}{N}$ as the frequency resolution of the DFT.

Notice 8 full cycles of Ω_1 and 9 full cycles of Ω_2 fit in N=200.



Summary

Time and frequency resolution are important issues in all Fourier analyses.

Frequency resolution is determined by the number of samples ${\cal N}$ included in the analysis.

