6.3000: Signal Processing

Discrete Fourier Transform
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Analyzing Frequency Content of Arbitrary Signals
Why use a DFT?

e Fourier Series: conceptually simple, but limited to periodic signals.

e Fourier Transforms: arbitrary signals, but continuous domain (£2)
— good for theory; not so good for numerical evaluation

e Discrete Fourier Transform: arbitrary DT signals, discrete domain (k)
— good for computation — broadly used in “Digital Signal Processing”

Today: using the DFT to analyze frequency content of a signal.



Single Sinusoid

Create four signals

x1[n] = cos(8mn/100)
xo[n] = cos(8n /100 — 7 /4)
xg[n] = cos(97n/100)
x4[n] = cos(97n /100 — 7/2)

each with a duration of 1second when the sample frequency is 44, 100 Hz.

Compare the DFTs of the first 100 samples of each of these signals.



Python Code

from math import cos, pi
from 1ib6003.audio import wav_write

from matplotlib.pyplot import stem, show

fs = 44100

xl = [cos(8#pi*n/100) for n in range(fs)]

x2 = [cos(8xpi*n/100-pi/4) for n in range(fs)]
x3 = [cos(9%pi*n/100) for n in range(fs)]

x4 = [cos(9*pi*n/100-pi/2) for n in range(fs)]

wav_write(x1l,fs,’x1.wav’)
wav_write(x2,fs,’x2.wav’)
wav_write(x3,fs,’x3.wav’)

wav_write(x4,fs,’x4.wav’)

stem(x1[0:100])
show ()



Single Sinusoid

z1[n] = cos(8mn/100)
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What is the frequency of this tone if the sample rate is 44,100 Hz?



Single Sinusoid

What is the frequency of the tone generated by z1[n]?

Since 21[n] = cos(87n/100), we know that the discrete frequency Q; = 3.
Furthermore, the sample frequency f = f; corresponds to the maximum
discrete frequency ) = 2w, and frequencies f in Hz are proportional to

discrete frequencies €.

f B Q
s C2r
Q 81 /100
So f = 2—f _ 8T/100 44 100 Hz = 1764 Hz
T
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Single Sinusoid

z1[n] = cos(8mn/100)
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Write a program to calculate the DFT of an input sequence.
Use that program to calculate X;j[k], which is the DFT of the first 100
samples of z1[n].



Single Sinusoid

Write a program to calculate the DFT of an input sequence.

Use that program to calculate X[k], which is the DFT of the first 100
samples of z1[n].

def dft(x):
N = len(x)
answer = [0 for k in range(N)]

for k in range(N):
for n in range(N):
answer [k] += (1/N)*x[n]*e**(-2j*pi*k*n/N)

return answer

X1 = dft(x1[0:100])



Single Sinusoid

Plot the magnitude of Xi[].

X1[k] = DFT{a:[0 : 100]}
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Single Sinusoid

Plot the magnitude of Xi[].

X1[k] = DFT{a:[0 : 100]}
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Which values of k£ are non-zero?
QN 8t 100
or 100 27
k = —4 is also non-zero (Euler's formula).
Also k = 100—4 = 96 is non-zero since X [k] is periodic in N.



Compare Two Signals

How will plots of DFT magnitudes differ for the following signals?
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z1[n] = cos(87n/100) x2[n] = cos(87n /100 — 7 /4)




Compare Two Signals

x1[n] = cos(8wn/100) xa[n] = cos(8mn /100 — 7 /4)
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No difference in magnitudes (but the phases are different).



Compare Two Signals

How will plots of DFT magnitudes differ for the following signals?

x1[n] = cos(87n/100) x3[n] = cos(97n/100)




Compare Two Signals

x1[n] = cos(87n,/100) x3[n] = cos(97n,/100)
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Why are these DFTs so different?



Compare Two Signals

x1[n] = cos(87n,/100) x3[n] = cos(97n,/100)
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Q1 # Q3. Even more importantly, x3[n] is not periodic in N = 100!



Single Sinusoid

This blurring occurs because the signal is not periodic in the analysis win-
dow (N = 100).

x3[n] = cos(97n,/100)
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Single Sinusoid

This blurring occurs because the signal is not periodic in the analysis win-
dow (N = 100).

x3[n] = cos(97n,/100)

What value of k corresponds to §2 = 97/1007

Q =97/100 = 27k/N

k=4.5

The signal frequency fell between the analysis frequencies.



Compare Two Signals

How will plots of DFT magnitudes differ for the following signals?
e x3[n] = cos(97n/100)
o x4[n| = cos(9mn /100 — 7 /2)



Compare Two Signals

x3[n] = cos(97n/100) x4[n] = cos(97n /100 — 7/2)
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Q3 = Q4. But DC bigger: 5 positive half cycles versus 4 negative ones.



Compare Two Signals

x3[n] = cos(97n,/100) x4[n] = cos(97n /100 — 7/2)
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High freq. content of X, smaller than Xs: |24[99] — x4[0]| < |23[99] — 23[0]|



Analyzing Signals with Multiple Frequencies

What is the minimum window size N needed to resolve © = 87/100 from
97/1007

x5[n] = cos(87n/100) + cos(97n/100)
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Analyzing Signals with Multiple Frequencies

If the analysis window is small (here N=100), the two frequencies 87/100
and 97/100 generate a single peak in the DFT at k = 4 (along with its
partner at k = 100—4 = 96).

x5[n] = cos(87n/100) + cos(97n/100) | X5 [K]|

2.0 0.6 1

L5 0.5

10

0.4

0.0 0.31

0.2+

0.1+

—2.0 0.0 q




Analyzing Signals with Multiple Frequencies

Two frequencies can look like one if analysis window is too small.
N = 100 zoomed

x5[n] = cos(8mn/100) + cos(97n,/100) }Xs [k”




Analyzing Signals with Multiple Frequencies

Two frequencies can look like one if analysis window is too small.
N =200

x5[n] = cos(8mn/100) + cos(97n,/100) | X5 (k]|
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Analyzing Signals with Multiple Frequencies

Two frequencies can look like one if analysis window is too small.
N = 200 zoomed

x5[n] = cos(8mn/100) + cos(97n,/100) | X5 (k]|




Analyzing Signals with Multiple Frequencies

Two frequencies can look like one if analysis window is too small.
N =400

x5[n] = cos(8mn/100) + cos(97n,/100) | X5 (k]|




Analyzing Signals with Multiple Frequencies

Two frequencies can look like one if analysis window is too small.
N = 400 zoomed

x5[n] = cos(8mn/100) + cos(97n,/100) | X5 (k]|
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These frequencies are clearly resolved with N = 400.



Frequency Scales

We can think of the DFT as having spectral resolution of (27/N)radians,
which is equivalent to (fs/N)Hz.

The time window is divided into N samples numbered n =0 to N—1.

[ ] time
0 1 N-1 N n [samples]
0o 7 L £ t [seconds]
Discrete frequencies are similarly numbered as k=0 to N—1
[ ] frequency
0 1 N-1 N k
0o = 2 Q [rad/sample]
0 Is fs f [HZ]



Analyzing Signals with Multiple Frequencies

Two frequencies are resolved if they are separated by more than QW’T

0 = o0 @nd Qy = 100 Will be resolved if

97 8 T 2
AQ=Qy -0y = — - 2 = = 7%
27 = 700 100 1000 N

That is, if N > 200.
We can think of QW’T as the frequency resolution of the DFT.

Notice 8 full cycles of €; and 9 full cycles of €y fit in N = 200.

1.0




Summary

Time and frequency resolution are important issues in all Fourier analyses.

Frequency resolution is determined by the number of samples N included
in the analysis.

[ ] time
0 1 N-1 N n [samples]
0o 7 = I t [seconds]
[ ] frequency
0 1 N-1 N k
0 e o Q [rad/sample]
0 Is Is I [Hz]



