
6.300: Signal Processing
Review Material Story Sheet for Quiz #2
Author Titus K. Roesler (tkr@mit.edu)

The Story So Far (Quiz #1 to Quiz #2)
Systems

• 10/02: LTI Systems differential equations and difference equations
• 10/07: Impulse Response convolution and the superposition integral
• 10/09: Frequency Response convolution in time, multiplication in frequency
• 10/14: Communication Systems amplitude modulation

Discrete Fourier Transform

• 10/14: Discrete Fourier Transform, Part #1 a discrete-time, discrete-frequency Fourier transform
• 10/16: Discrete Fourier Transform, Part #2 frequency resolution and circular convolution
• 10/21: Fast Fourier Transform divide-and-conquer algorithm to compute the DFT
• 10/28: Short-Time Fourier Transforms moving-window Fourier transforms
• 10/30: Speech Processing source-filter model of speech production

Mathematics Review
Dimensional Analysis

T0 (seconds)× fs (samples / second) = N0 (samples)

ω0 (radians / second)÷ fs (samples / second) = Ω0 (radians / sample)

CT cyclical frequency f0 = 1/T0 cycles per second or hertz (Hz)
CT angular frequency ω0 = 2π/T0 = 2πf0 radians per second
DT angular frequency Ω0 = ω0/fs = 2πf0/fs = 2πf0Ts = 2π/N0 radians per sample

Geometric Series
N−1∑
n=0

zn = 1− zN

1− z

∞∑
n=0

zn = 1
1− z

for |z| < 1

Binomial Theorem

(α+ β)n =
(
n

0

)
αn +

(
n

1

)
αn−1β +

(
n

2

)
αn−2β2 + · · ·+

(
n

n− 1

)
αβn−1 +

(
n

n

)
βn

(
n

k

)
≡ n!

k! (n− k)! where n! ≡ (n)(n− 1)(n− 2) · · · (3)(2)(1)

Continuous-Time Fourier Series
Continuous-Time Fourier Series
f(t) = f(t+ T) is a T -periodic function, and ω0 = 2π/T denotes the fundamental angular frequency.

Continuous-Time Fourier Series in Trigonometric Form

f(t) = c0 +
∞∑
k=1

ck cos(kω0t) +
∞∑
k=1

dk sin(kω0t)

where c0 =
1
T

ˆ
T
f(t) dt and ck = 2

T

ˆ
T
f(t) cos(kω0t) dt and dk = 2

T

ˆ
T
f(t) sin(kω0t) dt

c0, the “direct current” (DC) term, represents the average value of f(t) over a single period.

Continuous-Time Fourier Series in Complex Exponential Form

f(t) =
∞∑

k=−∞
ake

jkω0t where ak = 1
T

ˆ
T
f(t)e−jkω0tdt

(
e.g., a0 =

1
T

ˆ
T
f(t)dt

)

Frequency
Time and frequency are inversely proportional.

cyclical: f0 =
1
T

(cycles per second, or hertz) angular: ω0 = 2πf0 =
2π
T

(radians per second)

Complex Variables
Think of complex variables geometrically — as points in the complex plane.

z = Re{z}+ j Im{z}︸ ︷︷ ︸
rectangular

= re jφ︸ ︷︷ ︸
polar

where r =
√
Re{z}2 + Im{z}2︸ ︷︷ ︸
magnitude of z

and tan(φ) = Im{z}
Re{z}︸ ︷︷ ︸

angle or phase of z

Euler’s Formula

Euler’s formula relates the rectangular-coordinate and polar-coordinate descriptions of complex variables.

e jθ = cos(θ) + j sin(θ) cos(θ) = Re{e jθ} = e jθ + e−jθ

2 sin(θ) = Im{e jθ} = e jθ − e−jθ

2j

Sampling and Aliasing
From Continuous to Discrete
We refer to the process of discretizing time or space as sampling.

x[n] = x(n∆) where n ∈ Z and ∆ denotes the sampling period, sampling interval, or time step

We refer to the process of discretizing amplitude as quantization. (e.g., rounding)

x̂[n] = Q{x[n]} where Q{·} denotes a quantization operator

e.g., Q∆{x[n]} = ∆
⌊
x[n]
∆ + 1

2

⌋
for some constant ∆ > 0, where ⌊·⌋ denotes the floor function

Digital signals are discrete in both time and amplitude. Digital systems such as laptops process digital
signals. Discrete-time signals are discrete in time — but not necessarily in amplitude. In 6.300, we won’t
study quantization in great depth. We’ll focus on discrete-time signal processing.

Sampling and Aliasing
We sample a continuous-time signal x(t) every ∆ seconds to obtain a discrete-time signal x[n].

x[n] = x(n∆) where n ∈ Z and ∆ denotes the sampling period, sampling interval, or time step

Note that x[n] is a function of the integer n, which is enclosed in square brackets. In contrast, x(t) is a
function of the real variable t, which is enclosed in parentheses. With this notation, x[n] ̸= x(n) in general
— when you write x(n), you’re implicitly saying that ∆ = 1.

Aliasing

Sampling involves throwing away information. If we don’t sample frequently enough, the information within
our signal will be distorted: Frequencies will “fold in” on each other.

Nyquist-Shannon sampling theorem: Let fmax denote the highest frequency in x(t). The mini-
mum sampling rate that prevents aliasing is 2fmax — twice the highest frequency in x(t).

Frequencies
Always keep the dimensions of quantities in mind.

CT cyclical: f = 1
T

CT angular: ω = 2πf = 2π
T

DT angular: Ω = 2πf
fs

= ω

fs
= 2π

N

The argument to a trigonometric or exponential function must be expressed in radians.
• units{2πft} = (radians/cycle)× (cycles/second)× (seconds) = radians
• units{ωt} = (radians/second)× (seconds) = radians
• units{Ωn} = (radians/sample)× (samples) = radians

Discrete-Time Fourier Series
Fourier Series Formulæ

Continuous-Time Fourier Series (CTFS)

f(t) is a T -periodic function with fundamental angular frequency ω0 = 2π/T .

Synthesis: f(t) =
∞∑

k=−∞
ake

jkω0t Analysis: ak = 1
T

ˆ
T
f(t)e−jkω0t

Discrete-Time Fourier Series (DTFS)

f [n] is an N -periodic sequence with fundamental angular frequency Ω0 = 2π/N .

Synthesis: f [n] =
∑

k=⟨N⟩
ake

jkΩ0n Analysis: ak = 1
N

∑
n=⟨N⟩

f [n]e−jkΩ0n

A Few Properties of Fourier Series
Here are a few properties of Fourier series that we’ll use often in this class. We’ll learn more over time.

Linearity

f1(t) ⇐⇒ F1[k] f2(t) ⇐⇒ F2[k] f(t) = αf1(t) + βf2(t) ⇐⇒ F [k] = αF1[k] + βF2[k]

f1[n] ⇐⇒ F1[k] f2[n] ⇐⇒ F2[k] f [n] = αf1[n] + βf2[n] ⇐⇒ F [k] = αF1[k] + βF2[k]

Time Shift

f(t) ⇐⇒ F [k] f(t− t0) ⇐⇒ F [k]e−jkω0t0 = |F [k]|e j(∠F [k]−kω0t0)

f [n] ⇐⇒ F [k] f [n− n0] ⇐⇒ F [k]e−jkΩ0n0 = |F [k]|e j(∠F [k]−kΩ0n0)

Time Flip

f(t) ⇐⇒ F [k] f(−t) ⇐⇒ F [−k]

f [n] ⇐⇒ F [k] f [−n] ⇐⇒ F [−k]

Conjugate Symmetry (Hermitian Symmetry)

Real-valued signals have conjugate-symmetric Fourier series coefficients.

real-valued f(t) ⇐⇒ F [k] such that F ∗[k] = F [−k] where ∗ denotes complex conjugation

real-valued f [n] ⇐⇒ F [k] such that F ∗[k] = F [−k] where ∗ denotes complex conjugation

Continuous-Time Fourier Transform
Continuous-Time Fourier Transform (CTFT)
The continuous-time Fourier transform may be conceptualized as the continuum limit of a continuous-time
Fourier series. Infinitely-many discrete harmonics kω0 cluster infinitely-close together to form a continuous
frequency spectrum: kω0 (function of integer k) 7→ ω (function of real-valued ω).

Synthesis: x(t) = 1
2π

ˆ ∞

−∞
X(ω)e jωtdω Analysis: X(ω) =

ˆ ∞

−∞
x(t)e−jωtdt

Fourier Transform Pairs
δ(t) ⇐⇒ 1 (for all ω) 1 (for all t) ⇐⇒ 2πδ(ω)

δ(t− t0) ⇐⇒ e−jωt0 e jω0t ⇐⇒ 2πδ(ω − ω0)

Fourier Transform Properties
You fill this in! Many properties that we’ve seen in the context of Fourier series still hold true.

Fourier Series vs. Fourier Transform for Periodic Signals
Series: f(t) ⇐⇒ F [k] Transform: f(t) ⇐⇒

∑
k

2πF [k]δ(ω − kω0)︸ ︷︷ ︸
impulses at harmonics

Discrete-Time Fourier Transform
Discrete-Time Fourier Transform (DTFT)
The discrete-time Fourier transform is the discrete-time analogue of the continuous-time Fourier transform
— a Fourier transform for discrete-time signals. Infinitely-many discrete harmonics kΩ0 cluster infinitely-
close together to form a continuous frequency spectrum: kΩ0 7→ Ω.

Synthesis: x[n] = 1
2π

ˆ
2π

X(Ω)e jΩndΩ Analysis: X(Ω) =
∞∑

n=−∞
x[n]e−jΩn

Discrete-Time Fourier Transform Pairs
δ[n] ⇐⇒ 1 (for all Ω) 1 (for all n) ⇐⇒ 2πδ(Ωmod 2π)

δ[n− n0] ⇐⇒ e−jΩn0 e jΩ0n ⇐⇒ 2πδ(Ω− Ω0mod2π)

Discrete-Time Fourier Transform Properties
You fill this in! Many properties that we’ve seen in the context of Fourier series still hold true.
After you solve the problems on the other side of this sheet, write down the properties you just derived.

Fourier Series vs. Fourier Transform for Periodic Signals
Series: f [n] ⇐⇒ F [k] Transform: f [n] ⇐⇒

∑
k

2πF [k]δ(Ω− kΩ0)︸ ︷︷ ︸
impulses at harmonics

LTI Systems
Linear Time-Invariant Systems
A linear time-invariant (LTI) system is a system which is both linear and time-invariant.

x(t) → LTI → y(t) x[n] → LTI → y[n]

We will look at three equivalent representations of LTI systems in this class.
• differential equation (CT) or difference equation (DT)
• impulse response (CT) or unit-sample response (DT)
• frequency response

Linearity
A system is linear if and only if it is both additive and homogeneous.

Additivity

The response to a sum of inputs is a sum of the respective outputs.

If x1[n] → additive system → y1[n] and x2[n] → additive system → y2[n],

then x[n] = x1[n] + x2[n] → additive system → y[n] = y1[n] + y2[n].

Homogeneity

Scaling the input correspondingly scales the output.

If x[n] → homogeneous system → y[n], then α · x[n] → homogeneous system → α · y[n].

Linearity

The response to a sum of scaled inputs is a sum of the respective scaled outputs.

If x1[n] → linear system → y1[n] and x2[n] → linear system → y2[n],

then x[n] = α · x1[n] + β · x2[n] → linear system → y[n] = α · y1[n] + β · y2[n].

Time-Invariance
Delaying (or advancing) the input delays (or advances) the output by the exact same duration of time.

If x[n] → time-invariant system → y[n], then x[n− n0] → time-invariant system → y[n− n0].

Convolution and Unit-Sample Response
Convolution
Convolution is a mathematical operation. It is associative, commutative, and distributive.
In discrete time, convolution takes the form of a summation.

Convolution Sum: (x ∗ h)[n] =
∞∑

k=−∞
x[k]h[n− k] = (h ∗ x)[n] =

∞∑
k=−∞

h[k]x[n− k]

Compute the result using superposition. Use a table or sketch a plot to keep track of the values.

n = 0 1 2 3 4 5 6 7 8 9

x[n] = 1 1 1 1 0 0 0 0 0 0

h[n] = 1 2 3 0 0 0 0 0 0 0

n = 0 1 2 3 4 5 6 7 8 9

h[0]x[n− 0] = 1 1 1 1 0 0 0 0 0 0

h[1]x[n− 1] = 0 2 2 2 2 0 0 0 0 0

h[2]x[n− 2] = 0 0 3 3 3 3 0 0 0 0

(x ∗ h)[n] = 1 3 6 6 5 3 0 0 0 0

In continuous time, convolution takes the form of an integral.

Convolution Integral: (x ∗ h)(t) =
ˆ ∞

−∞
x(τ)h(t− τ)dτ = (h ∗ x)(t) =

ˆ ∞

−∞
h(τ)x(t− τ)dτ

It’s probably simplest to evaluate the integral piecewise over several intervals.

Unit-Sample Response

unit-sample signal δ[n] → DT LTI System → unit-sample response h[n] =
∞∑

k=−∞
h[k]δ[n− k]

e.g., y[n] = 1
2x[n] +

1
2x[n− 1] with initial rest conditions ⇐⇒ h[n] = 1

2δ[n] +
1
2δ[n− 1]

e.g., y[n] = 1
2y[n− 1] + x[n] with initial rest conditions ⇐⇒ h[n] =

(1
2
)n
u[n]

Impulse Response

unit-impulse signal δ(t) → CT LTI System → impulse response h(t) =
ˆ ∞

−∞
h(τ)δ(t− τ)dτ

Frequency Response and Filtering
Frequency Response
Complex exponentials are eigenfunctions of LTI systems.

e jωt → LTI → H(ω)e jωt = |H(ω)|e j(ωt+∠H(ω)) X(ω) → LTI → Y (ω) = H(ω)X(ω)

e jΩn → LTI → H(Ω)e jΩn = |H(Ω)|e j(Ωn+∠H(Ω)) X(Ω) → LTI → Y (Ω) = H(Ω)X(Ω)

We may characterize an LTI system as a filter that shapes a signal’s spectrum.
Here is the physical interpretation: If the input to an LTI system is a sinusoid, the output of the LTI system
is a scaled (i.e., amplified or attenuated) and phase-shifted sinusoid.

cos(ωt) → LTI → |H(ω)| cos
(
ωt+ ∠H(ω)

)
cos(Ωn) → LTI → |H(Ω)| cos

(
Ωn+ ∠H(Ω)

)

Convolution Theorem
Convolution in time corresponds to multiplication in frequency.
Convolution in frequency corresponds to multiplication in time.

(x ∗ h)(t) ⇐⇒ X(ω)H(ω) x(t)h(t) ⇐⇒ 1
2π (X ∗H)(ω)

(x ∗ h)[n] ⇐⇒ X(Ω)H(Ω) x[n]h[n] ⇐⇒ 1
2π (X ∗H)(Ω)

Difference Equation vs. Impulse Response vs. Frequency Response
Consider the LTI system represented by the following difference equation.

∞∑
k=−∞

aky[n− k] =
∞∑

k=−∞
bkx[n− k]

Computing the DTFT yields the frequency response.

∞∑
k=−∞

ake
−jkΩY (Ω) =

∞∑
k=−∞

bke
−jkΩX(Ω) ⇐⇒ H(Ω) = Y (Ω)

X(Ω) =
∑∞

k=−∞ bke
−jkΩ∑∞

k=−∞ ake−jkΩ

The impulse response is given by the inverse DTFT of the frequency response. H(Ω) is a rational polynomial
that one can decompose into a sum of simpler rational polynomials (e.g., via partial fractions) with simpler
inverse DTFTs.

h[n] = 1
2π

ˆ
2π

H(Ω)e jΩndΩ

e.g., h[n] = 1
2π

ˆ
2π

(1
1− 1

2e
−jΩ + 1

1 + 1
3e

−jΩ

)
e jΩndΩ =

(1
2
)n
u[n] +

(
−1

3
)n
u[n]

Communications Systems
Communications Systems
A key problem in the design of any communications system is matching characteristics of the signal to those
of the channel medium. Much of the current research in communications focuses on modifying signals to
better accommodate constraints imposed by the channel medium. In lecture, we looked at simple channel-
medium-matching strategies based on modulation. Modulation underlies virtually all matching schemes.

Modulation Property (Frequency Shift Property)

Multiplying a signal x(t) by a time-varying complex exponential shifts the transform X(ω) in frequency.

x(t)e jωct ⇐⇒ 1
2π
(
X(ω) ∗ 2πδ(ω − ωc)

)
= X(ω − ωc)

Just as convolution in time corresponds to multiplication in frequency, multiplication in time corresponds
to convolution in frequency.

Convolution with Impulses

Sinusoidal Modulation
We examined amplitude modulation (AM) in class. Perhaps you’ve heard of frequency modulation (FM)
or phase modulation (PM) — but you don’t need to know these for this class, per se.

y(t) = A cos(ωt+ φ)

• amplitude modulation (AM) time-varying amplitude A = A(t)
• frequency modulation (FM) time-varying frequency ω = ω(t)
• phase modulation (PM) time-varying phase φ = φ(t)

Discrete Fourier Transform
Discrete Fourier Transform
We may represent a periodic discrete-time signal x[n] = x[n + N] as a finite-length sum of harmonically-
related complex exponentials with a discrete-time Fourier series. Periodicity is rather restrictive, as many
real-world signals of interest are not periodic. To be periodic, a signal must repeat forever!

The discrete-time Fourier transform is a Fourier representation for aperiodic discrete-time signals x[n], but
the analysis formula entails an infinite-length sum, and the spectrum X(Ω) — a function of the continuous
variable Ω — is continuous. While a useful theoretical tool, the DTFT is also somewhat impractical.

In search of a Fourier representation that is amenable for digital computation, we turn to the DFT. You
might call the DFT a discrete-time, discrete-frequency Fourier transform.

• finite-length signals windowing xw[n] = x[n]w[n]
• discrete in time time indexed by integer n
• discrete in frequency frequency indexed by integer k

Analysis: X[k] = 1
N

N−1∑
n=0

x[n]e−jk 2π
N

n Synthesis: x[n] =
N−1∑
k=0

X[k]e jk 2π
N

n

Note: There is no general consensus on where to place the 1/N factor in the equations that define the DFT.
In 6.300, we place the 1/N factor in the analysis equation, so that the DFT and DTFS analysis equations
match. In both cases, then, the DC term X[0] is the average value of x[n] over a length-N interval. Some
authors and numerical packages (e.g., MATLAB) place the 1/N factor in the synthesis equation instead,
however. Other authors and numerical packages even put a factor of 1/

√
N in both the analysis and

synthesis equations to make the DFT a unitary transformation.

Relation to Discrete-Time Fourier Series (DTFS)
The length-N DFT is equivalent to the DTFS of an N -periodic extension of the windowed signal xw[n] =
x[n]w[n]. From this perspective, sharp discontinuities in the periodic extension of xw[n] lead to spurious
high-frequency content spread across the spectrum of xw[n].

X[k] = 1
N

N−1∑
n=0

xw[(nmodN)]e−j2πkn/N

Relation to Discrete-Time Fourier Transform (DTFT)
The DFT returns N scaled, equally-spaced samples of the DTFT over the interval [0, 2π). Increasing the
DFT length N yields more samples of the DTFT, which are spaced more closely together.

X[k] = 1
NXw

(2π
N k
)

cyclical frequency resolution: fs
N

hertz angular frequency resolution: 2π
N

radians

Circular Convolution
Circular Convolution
Multiplication of N -point DFTs corresponds to time-domain circular convolution.

1
N (x⊛ h)[n] ⇐⇒ XN [k]HN [k] (x⊛ h)[n] = N DFT−1

N {XN [k]HN [k]}

(x⊛ h)[n] =
N−1∑
m=0

x[m]h
[(
(n−m)modN

)]
= (h⊛ x)[n] =

N−1∑
m=0

h[m]x
[(
(n−m)modN

)]
Computing a circular convolution may seem complicated, but it is really simple.

• Perform linear convolution — the convolution you’re already familiar with.
• Wrap the result of linear convolution into a length-N interval.

This is time-aliasing, which is the time-domain analogue of the more familiar frequency-aliasing.
• Periodically extend every N samples.

Compute the result using superposition. Use a table or sketch a plot to keep track of the values.

n = 0 1 2 3 4 5 6 7 8 9

x[n] = 1 1 1 1 0 0 0 0 0 0

h[n] = 1 2 3 0 0 0 0 0 0 0

n = 0 1 2 3 4 5 6 7 8 9

h[0]x[n− 0] = 1 1 1 1 0 0 0 0 0 0

h[1]x[n− 1] = 0 2 2 2 2 0 0 0 0 0

h[2]x[n− 2] = 0 0 3 3 3 3 0 0 0 0

(x ∗ h)[n] = 1 3 6 6 5 3 0 0 0 0

(x⊛ h)6[n] = 1 3 6 6 5 3 1 3 6 6

(x⊛ h)5[n] = 4 3 6 6 5 4 3 6 6 5

(x⊛ h)4[n] = 6 6 6 6 6 6 6 6 6 6

(x⊛ h)3[n] = 7 8 9 7 8 9 7 8 9 7

(x⊛ h)2[n] = 12 12 12 12 12 12 12 12 12 12

(x⊛ h)1[n] = 24 24 24 24 24 24 24 24 24 24

Here’s the take-home message for today: You need to get comfortable with performing convolution from
this moment on. If you can’t perform convolution, you can’t perform circular convolution. We will perform
convolution for the rest of the class. There will be many convolution problems in the homework and on the
quizzes. Going forward, you cannot succeed in this class if you cannot perform convolution.
On the bright side, once you can perform convolution, circular convolution is easy!

Window Functions
A defining feature of the DFT is that signals we analyze have a finite length: N samples. The number of
samples plays a key role in determining the trade-off between time resolution and frequency resolution. We
can restrict a signal x[n] to have length N by multiplying pointwise by a window function w[n].

Windowing
Multiplying x[n] by the window function w[n] in the time domain
corresponds to convolving the DTFT of x[n] with the DTFT of w[n] in the frequency domain.

xw[n] = x[n]w[n] ⇐⇒ Xw(Ω) = 1
2π
(
X ∗W

)
(Ω)

Fast Fourier Transform
Schematic: Decimation-in-Time FFT Algorithm

Inverse FFT
In lecture, we discussed FFT algorithms for computing the DFT. Because the analysis and synthesis equa-
tions for the DFT are so similar, we need only make a few tweaks to derive inverse FFT algorithms for the
computing the inverse DFT. How would you change the code below to compute the inverse DFT?

from math import e, pi
def FFT(x):

N = len(x)
if N == 1:

return x
if N != 2 * N//2:

print(’N must be a power of 2’)
exit(1)

xe = x[::2]
xo = x[1::2]
Xe = FFT(xe)
Xo = FFT(xo)
X = []
for k in range(N//2):

X.append((Xe[k] + e**(-2j*pi*k/N)*Xo[k]) / 2)
for k in range(N//2):

X.append((Xe[k] - e**(-2j*pi*k/N)*Xo[k]) / 2)
return X

Reference
Transform Pairs: Continuous-Time Fourier Transform

δ(t) ⇐⇒ 1 δ(t− t0) ⇐⇒ e−jωt0 1 ⇐⇒ 2πδ(ω) e jω0t ⇐⇒ 2πδ(ω − ω0)

Transform Pairs: Discrete-Time Fourier Transform
δ[n] ⇐⇒ 1 δ[n−n0] ⇐⇒ e−jΩn0 1 ⇐⇒ 2πδ(Ω mod 2π) e jΩ0n ⇐⇒ 2πδ

(
(Ω−Ω0) mod 2π

)

Transform Pairs: Discrete Fourier Transform
δ[n] ⇐⇒ 1

N δ[n− n0] ⇐⇒ 1
N e−jk 2π

N
n0 1 ⇐⇒ δ[k mod N] e jk0

2π
N

n ⇐⇒ δ
[
(k − k0) mod N

]

Fourier Properties

c1x1[n] + c2x2[n] ⇐⇒ c1X1(Ω) + c2X2(Ω) (x1 ∗ x2)[n] ⇐⇒ X1(Ω)X2(Ω)
1
N (x1 ⊛ x2)[n] ⇐⇒ X1[k]X2[k] x1[n]x2[n] ⇐⇒ 1

2π
(
X1 ∗X2

)
(Ω)

x[−n] ⇐⇒ X(−Ω) x[nM] ⇐⇒ X(Ω
M)

x[n− n0] ⇐⇒ e−jΩn0X(Ω) e jΩ0nx[n] ⇐⇒ X(Ω− Ω0)

nx[n] ⇐⇒ j d
dΩX(Ω) d

dtx(t) ⇐⇒ jωX(ω)

