6.300: Signal Processing
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Systems

e 10/02: LTI Systems

e 10/07: Impulse Response

e 10/09: Frequency Response

e 10/14: Communication Systems

Discrete Fourier Transform

e 10/14: Discrete Fourier Transform, Part #1
e 10/16: Discrete Fourier Transform, Part #2
e 10/21: Fast Fourier Transform

e 10/28: Short-Time Fourier Transforms

e 10/30: Speech Processing

The Story So Far (Quiz #1 to Quiz #2)

differential equations and difference equations
convolution and the superposition integral
convolution in time, multiplication in frequency
amplitude modulation

a discrete-time, discrete-frequency Fourier transform
frequency resolution and circular convolution
divide-and-conquer algorithm to compute the DF'T
moving-window Fourier transforms

source-filter model of speech production

Mathematics Review

Dimensional Analysis

CT cyclical frequency fo = 1/Tp
CT angular frequency wy = 27 /Ty = 27 f

DT angular frequency Qo = wo/fs = 2nfo/ fs = 2 foTs = 2 /Ny

To (seconds) x fs (samples /second) = Ny (samples)

wo (radians / second) + f, (samples / second) = Q (radians / sample)

cycles per second or hertz (Hz)
radians per second
radians per sample

Geometric Series
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2=
n=0 —Z

Binomial Theorem
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Continuous-Time Fourier Series

Continuous-Time Fourier Series

f(t) = f(t+T) is a T-periodic function, and wy = 27/T" denotes the fundamental angular frequency.

Continuous-Time Fourier Series in Trigonometric Form

o0 o0
ft)=co+ Z ¢k cos(kwot) + Z dy, sin(kwot)
k=1 k=1

where co = ~ / F(t)dt and ¢, = 2 / £(t) cos(kwot) dt and di, = = / £(2) sin(kwot) dt
T Jr T Jr T Jr
co, the “direct current” (DC) term, represents the average value of f(t) over a single period.

Continuous-Time Fourier Series in Complex Exponential Form

Z areF0t where aj, = —/ f(t)e Ihwotdt (e.g., ag = %/ f(t)dt)
T

k=—o00

Frequency

Time and frequency are inversely proportional.

1 2
cyclical: fy = T (cycles per second, or hertz)  angular: wy =27 fy = % (radians per second)

Complex Variables

Think of complex variables geometrically — as points in the complex plane.

I
z = Re{z} 'tj Im{z} = where r= \/Re{z}2 + Im{z}2 and tan(¢) = ;{:z%
rectangular olar magnltude of z

a,ngle or pha.se of z

Euler’s Formula

Euler’s formula relates the rectangular-coordinate and polar-coordinate descriptions of complex variables.
— e 0
2j

ed0 4 =99

5 sin(f) = Im{e?®} =

7% = cos(#) + j sin(0) cos(#) = Re{e’?} =




Sampling and Aliasing

From Continuous to Discrete

We refer to the process of discretizing time or space as sampling.
z[n] = z(nA) where n € Z and A denotes the sampling period, sampling interval, or time step

We refer to the process of discretizing amplitude as quantization. (e.g., rounding)

Z[n] = Q{z[n]} where Q{-} denotes a quantization operator

1
e.g., Qa{zn|} =A {% + §J for some constant A > 0, where |-| denotes the floor function
Digital signals are discrete in both time and amplitude. Digital systems such as laptops process digital
signals. Discrete-time signals are discrete in time — but not necessarily in amplitude. In 6.300, we won’t
study quantization in great depth. We’ll focus on discrete-time signal processing.

Sampling and Aliasing
We sample a continuous-time signal x(t) every A seconds to obtain a discrete-time signal z[n].
z[n] = z(nA) where n € Z and A denotes the sampling period, sampling interval, or time step

Note that z[n| is a function of the integer n, which is enclosed in square brackets. In contrast, z(¢) is a
function of the real variable ¢, which is enclosed in parentheses. With this notation, z[n] # z(n) in general
— when you write z(n), you’re implicitly saying that A = 1.

Aliasing

Sampling involves throwing away information. If we don’t sample frequently enough, the information within
our signal will be distorted: Frequencies will “fold in” on each other.

Nyquist-Shannon sampling theorem: Let fn.x denote the highest frequency in z(t). The mini-
mum sampling rate that prevents aliasing is 2 fr,ax — twice the highest frequency in z(t).

Frequencies

Always keep the dimensions of quantities in mind.

1 2 2 2
CT cyclical: f = T CT angular: w=2nf = % DT angular: Q= rf YT

The argument to a trigonometric or exponential function must be expressed in radians.

o units{27 ft} = (radians/cycle) x (cycles/second) x (seconds) = radians
o units{wt} = (radians/second) x (seconds) = radians
e units{Qn} = (radians/sample) x (samples) = radians




Discrete-Time Fourier Series

Fourier Series Formulae

Continuous-Time Fourier Series (CTFS)

f(¢t) is a T-periodic function with fundamental angular frequency wg = 27/T.

oo ) 1 .
Synthesis: f(t) = Z aje’kwot Analysis: a; = T/ f(t)eThwot
T

k=—o00
Discrete-Time Fourier Series (DTFS)

f[n] is an N-periodic sequence with fundamental angular frequency Q¢ = 27 /N.

. 1 .
Synthesis: f[n] = Z aye *on Analysis: a; = ¥ Z f[n]e~THsn
k=(N) n=(N)

A Few Properties of Fourier Series

Here are a few properties of Fourier series that we’ll use often in this class. We’ll learn more over time.

Linearity
fi(t) <= Fi[k] f2(t) <= P[] f@t) =afi(t) + Bf(t) < Flk] = aFi[k] + BFlk]
Al < FK  fln] < BE fin]l = afifn] + Bfln] < F[H = aFi[k] + BFs[K]

Time Shift

f(t) < Flk| f(t—ty) < FlkleIkwoto — |F[k]|eI(“FIkl-kwoto)
fln] <= FIK] fln —ng] < Flkle=7Fn0 — | F[k] |’ (“Flkl—F0mo)
Time Flip
f(t) < F[K] f(~t) <= F[-k|
fln] <= FI[k] fl-n] < F[—k]

Conjugate Symmetry (Hermitian Symmetry)

Real-valued signals have conjugate-symmetric Fourier series coefficients.
real-valued f(t) <= F'[k] such that F*[k] = F[—k| where * denotes complex conjugation

real-valued f[n| <= F[k| such that F*[k] = F[—k| where * denotes complex conjugation




Continuous-Time Fourier Transform

Continuous-Time Fourier Transform (CTFT)

The continuous-time Fourier transform may be conceptualized as the continuum limit of a continuous-time
Fourier series. Infinitely-many discrete harmonics kwg cluster infinitely-close together to form a continuous
frequency spectrum: kwy (function of integer k) — w (function of real-valued w).

Synthesis: z(t) = 1 / X (w)ed“tdw Analysis: X(w) = / z(t)e It
T J—0o —0o0
Fourier Transform Pairs
0(t) <= 1 (for all w) 1 (for all t) <= 2md(w)

§(t —ty) = e Iwho eI¥0t = 2716(w — wp)

Fourier Transform Properties

You fill this in! Many properties that we’ve seen in the context of Fourier series still hold true.

Fourier Series vs. Fourier Transform for Periodic Signals

Series: f(t) <= F[k] Transform: f(t) < Z?wF[k]&(w—kwoz

TV
impulses at harmonics




Discrete-Time Fourier Transform

Discrete-Time Fourier Transform (DTFT)

The discrete-time Fourier transform is the discrete-time analogue of the continuous-time Fourier transform
— a Fourier transform for discrete-time signals. Infinitely-many discrete harmonics k€)y cluster infinitely-
close together to form a continuous frequency spectrum: kQy — Q.
. 1 iOn . - —jOn
Synthesis: z[n] = — [ X(Q)e’*"d2 Analysis: X(Q) = > z[n]e”?

271' 2 n——oo

Discrete-Time Fourier Transform Pairs

d[n] <= 1 (for all Q) 1 (for all n) <= 276(Qmod 27)

8[n —ng] = e IS0 eI — 276(Q — Qg mod 27)

Discrete-Time Fourier Transform Properties

You fill this in! Many properties that we’ve seen in the context of Fourier series still hold true.
After you solve the problems on the other side of this sheet, write down the properties you just derived.

Fourier Series vs. Fourier Transform for Periodic Signals

Series: f[n] < FIk] Transform: f[n| < Z??TF[I{?](;(Q—]CQ()Z

impulses at harmonics




LTI Systems

Linear Time-Invariant Systems

A linear time-invariant (LTI) system is a system which is both linear and time-invariant.

z(t) — — y(t) zn] — — y[n]

We will look at three equivalent representations of LTI systems in this class.

o differential equation (CT) or difference equation (DT)
« impulse response (CT) or unit-sample response (DT)
o frequency response

Linearity

A system is linear if and only if it is both additive and homogeneous.

Additivity

The response to a sum of inputs is a sum of the respective outputs.

If 1[n] — ’ additive system ‘ — y1[n] and z2[n] — ‘additive system ‘ — y2[n],

then z[n] = z1[n| + z2[n] — ’ additive system ‘ — y[n] = y1[n] + ya[n].

Homogeneity

Scaling the input correspondingly scales the output.

If z[n] — ‘ homogeneous system ‘ — y[n], then a- z[n] — ‘homogeneous system ‘ — a-y[n].

Linearity

The response to a sum of scaled inputs is a sum of the respective scaled outputs.

) - (B ] ) 0 ] - (B ] )
then z[n] = a - z1[n| + B - z2[n] — —) y[n] = a-y1[n] + B - ya[n].

Time-Invariance

Delaying (or advancing) the input delays (or advances) the output by the exact same duration of time.

If z[n] — ‘ time-invariant system ‘ — y[n], then z[n — ng] — ‘time—invariant system ‘ — y[n — ny)-




Convolution and Unit-Sample Response

Convolution
Convolution is a mathematical operation. It is associative, commutative, and distributive.
In discrete time, convolution takes the form of a summation.

Convolution Sum: (z * h)[n| = f: z[k|h[n — k] = (h x x)[n] Z hlk]z[n — k]

k=—00 k=—o00

Compute the result using superposition. Use a table or sketch a plot to keep track of the values.

n = o] [a] f2] (3] l4f [5] [6] [7] [8] [

z[n] = 1 1 1 1 0 0 0 0 0 0
h[n] = 1 2 3 0 0 0 0 0 0 0

h[0] z[n — 0] =
h(1] z[n — 1] =
hi2] z[n — 2] = 3

(z * h)[n] = 3] [e] 6]

2] [3]
1
2

n = o]
11
0 2
0 0

1
2
3

5] [6]
0 0
0 0
30
3] [o

| e | v | o |
@OOOH
@OOOH
@OOO@

ju—y

In continuous time, convolution takes the form of an integral.

Convolution Integral: (z x h)(t) = /00 z(T)h(t — 7)dT = (h * z)(?) / h(T)x(t — 7)d

—00

It’s probably simplest to evaluate the integral piecewise over several intervals.

Unit-Sample Response

unit-sample signal d[n] — ‘DT LTT System ‘ — unit-sample response h[n| = Z hlk]é[n — k]

k=—o0

e.g., y[n] = 1z[n] + 3z[n — 1] with initial rest conditions <= h[n] = $6[n] + 3d[n — 1]

e.g., y[n] = 3y[n — 1] + z[n] with initial rest conditions <= h[n] = (3)"u[n]

Impulse Response

unit-impulse signal §(t) — ’ CT LTI System | — impulse response h(t / h(T)o(t — 7)d




Frequency Response and Filtering

Frequency Response

Complex exponentials are eigenfunctions of LTI systems.

e - [LTT| » H(w)e?™ = [Hw)|e? @ He)  X(w) - [LTT] - Y (w) = Hw)X ()

e? 5 [LTI] - H(Q)eI™ = |H(@)[e/ ™+ H@)  x(0) -[LTI] - Y(Q) = BH@Q)X(Q)

We may characterize an LTI system as a filter that shapes a signal’s spectrum

Here is the physical interpretation: If the input to an LTI system is a sinusoid, the output of the LTI system
is a scaled (i.e., amplified or attenuated) and phase-shifted sinusoid

cos(wt) — — |H(w)| cos(wt + ZH (w))
cos(Qn) — — |H(Q)| cos(Qn + LH())

Convolution Theorem

Convolution in time corresponds to multiplication in frequency.
Convolution in frequency corresponds to multiplication in time.

(x*h)(t) <= X(w)H(w) z(t)h(t) = (X xH)(w)

Difference Equation vs. Impulse Response vs. Frequency Response

Consider the LTI system represented by the following difference equation

e o]

Z aryln — k| = io: brx[n — kj

k=—o0

Computing the DTFT yields the frequency response.

k=—o0

_ _ Y(Q) TR bre
JkQ JkQ 00
k_}_; are Y (Q) = k_§_: e X (Q) = H(Q) = F g = S

The impulse response is given by the inverse DTFT of the frequency response. H () is a rational polynomial
that one can decompose into a sum of simpler rational polynomials (e.g., via partial fractions) with simpler

inverse DTFTs.

hln] = 1 H(Q)el™MdQ
2T

o8, hln] = 5 /W(l_%le_j“ 1+1 ) = (3)" ] + (=)l




Communications Systems

Communications Systems

A key problem in the design of any communications system is matching characteristics of the signal to those
of the channel medium. Much of the current research in communications focuses on modifying signals to
better accommodate constraints imposed by the channel medium. In lecture, we looked at simple channel-
medium-matching strategies based on modulation. Modulation underlies virtually all matching schemes.

Modulation Property (Frequency Shift Property)
Multiplying a signal z(t) by a time-varying complex exponential shifts the transform X (w) in frequency.
z(t)e’ = L(X(w)*2m0(w —we)) = X(w — we)

Just as convolution in time corresponds to multiplication in frequency, multiplication in time corresponds
to convolution in frequency.

Convolution with Impulses

Hipr(2)
) T T
I 1 Q 1 I I I 1 Q
—T —Qd Qd m —T —QC Qc 7T
H(£2)
1 I 1 I I Q
—T -, Q. T

Sinusoidal Modulation

We examined amplitude modulation (AM) in class. Perhaps you’ve heard of frequency modulation (FM)
or phase modulation (PM) — but you don’t need to know these for this class, per se.

y(t) = Acos(wt + ¢)

e amplitude modulation (AM) time-varying amplitude A = A(¢)
e frequency modulation (FM) time-varying frequency w = w(t)
 phase modulation (PM) time-varying phase ¢ = ¢(t)




Discrete Fourier Transform

Discrete Fourier Transform

We may represent a periodic discrete-time signal z[n] = z[n + N] as a finite-length sum of harmonically-
related complex exponentials with a discrete-time Fourier series. Periodicity is rather restrictive, as many
real-world signals of interest are not periodic. To be periodic, a signal must repeat forever!

The discrete-time Fourier transform is a Fourier representation for aperiodic discrete-time signals z[n], but
the analysis formula entails an infinite-length sum, and the spectrum X (Q) — a function of the continuous
variable {2 — is continuous. While a useful theoretical tool, the DTFT is also somewhat impractical.

In search of a Fourier representation that is amenable for digital computation, we turn to the DFT. You
might call the DFT a discrete-time, discrete-frequency Fourier transform.

o finite-length signals windowing z,,[n] = z[n]w[n]
o discrete in time time indexed by integer n
o discrete in frequency frequency indexed by integer k
1 N1 Y N-1 Y
Analysis: X[k| = N Z z[n]e IFN" Synthesis: z[n] = Z X[k]edk N
n=0 k=0

Note: There is no general consensus on where to place the 1/N factor in the equations that define the DFT.
In 6.300, we place the 1/N factor in the analysis equation, so that the DFT and DTFS analysis equations
match. In both cases, then, the DC term X|[0] is the average value of z[n] over a length-N interval. Some
authors and numerical packages (e.g., MATLAB) place the 1/N factor in the synthesis equation instead,
however. Other authors and numerical packages even put a factor of 1/v/N in both the analysis and
synthesis equations to make the DFT a unitary transformation.

Relation to Discrete-Time Fourier Series (DTFS)

The length-N DFT is equivalent to the DTFS of an N-periodic extension of the windowed signal z,,[n] =
z[n]w[n]. From this perspective, sharp discontinuities in the periodic extension of z,[n] lead to spurious
high-frequency content spread across the spectrum of z,,[n].

N-1
X[k] = % Z Z[(nmod N)]e=72kn/N

n=0

Relation to Discrete-Time Fourier Transform (DTFT)

The DFT returns N scaled, equally-spaced samples of the DTFT over the interval [0,27). Increasing the
DFT length N yields more samples of the DTFT, which are spaced more closely together.

X[k = 5 Xu (k)

27
cyclical frequency resolution: {T‘; hertz angular frequency resolution: N radians




Circular Convolution

Circular Convolution

Multiplication of N-point DFTs corresponds to time-domain circular convolution.

y(@®h)n] <= Xnlk|Hy[k] (¢ ® h)[n] = N DFT ' {Xn[k|Hy[k]}
N-1 N-1
(z@h)n] = Y amlh[((n—m)mod N)| = (h@ z)[n] = > hlmlz|((n — m) mod N)]
m=0 m=0

Computing a circular convolution may seem complicated, but it is really simple.

e Perform linear convolution — the convolution you're already familiar with.
o Wrap the result of linear convolution into a length-N interval.

This is time-aliasing, which is the time-domain analogue of the more familiar frequency-aliasing.
o Periodically extend every N samples.

Compute the result using superposition. Use a table or sketch a plot to keep track of the values.

n = o] 2]  [3] 6] 9]
z[n] = 1 1 1 1 0 0 0 0 0 0
h[n] = 1 2 3 0 0 0 0 0 0 0

n = o] 2]  [3] [4] 6] 9]
hl0]z[n—0] = 1 1 1 1 0 0 0 0 0 0
R]z[n—1] = 0 2 2 2 2 0 0 0 0 0
h[2lzn—2] = 0 0 3 3 3 3 0 0 0 0

(@xh)n] = 3] [e] [6] 3] [o] [of [o] [of
(@h)ln] = 3] [6] [e] [5] [3] 3] [6] [6]
(@®h)ln] = [4] 6] [6] 3] [6] [6]
(e®haln] = [6] [6] [6] [6] [6] [6] [6] [6] [6 [6
(@@h)sln] = 9] 9] 9]
(x®h)on) = [12] [12] [12] 12| |12] (12| [12] [12] [12] [12]
@@kl = [24] [24] [24] [24] [24] [24] [24] [24] [24] [24]

Here’s the take-home message for today: You need to get comfortable with performing convolution from
this moment on. If you can’t perform convolution, you can’t perform circular convolution. We will perform
convolution for the rest of the class. There will be many convolution problems in the homework and on the
quizzes. Going forward, you cannot succeed in this class if you cannot perform convolution.

On the bright side, once you can perform convolution, circular convolution is easy!




Window Functions

A defining feature of the DFT is that signals we analyze have a finite length: N samples. The number of
samples plays a key role in determining the trade-off between time resolution and frequency resolution. We
can restrict a signal z[n| to have length N by multiplying pointwise by a window function w[n].

Windowing

ZTyn] = z[njwn] <= X, ()

Multiplying z[n] by the window function w(n] in the time domain
corresponds to convolving the DTFT of z[n] with the DTFT of w[n] in the frequency domain.

(X« W)(Q)

1

T

rectangular window

Bartlett window

Hann window
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Fast Fourier Transform

Schematic: Decimation-in-Time FFT Algorithm

f10] —— :><>® »va .\ >d— F[0]
L~i% 1 !
f14] — 3% :>02® - .\v >D— [[1]
} Je /% :
f12] ) :><>® ; >D .\><>é® > [[2]
Lei'g L7 L
fl6] 2o »Ab - >H— (3]
: el
f{1] »® > O&—» F[4]
;ej%iyz 1 >\/' 1,354
f[5] 2 >D 2 . >OE® 2 : A\:® > F[E)]
f13] 2 » D 2 - > 2 >/ > » [[6]
se 17 5€ Y ,le Uy
11— 2 -0 >&—> F7]

Inverse FFT

from math import e, pi
def FFT(x):
N = len(x)
if N ==
return x
if N =2 * N//2:

exit (1)
xe = x[::2]
xo = x[1::2]
Xe = FFT(xe)
Xo = FFT(xo0)
X=1

for k in range(N//2):
for k in range(N//2):

return X

print (’N must be a power of 27)

In lecture, we discussed FFT algorithms for computing the DFT. Because the analysis and synthesis equa-
tions for the DF'T are so similar, we need only make a few tweaks to derive inverse FFT algorithms for the
computing the inverse DFT. How would you change the code below to compute the inverse DFT?

X.append((Xe[k] + ex*(-2j*pi*k/N)*Xo[k]) / 2)

X.append((Xe[k] - ex*(-2j*pi*k/N)*Xo[k]) / 2)




Reference

Transform Pairs: Continuous-Time Fourier Transform

iit) =1 5(t —tg) <= e Ivh 1 < 271é(w) eIt = 2716 (w — wo)

Transform Pairs: Discrete-Time Fourier Transform

d[n] <1 8[n—ng] < e im0 1 < 276(Q mod 27) eI — 276((Q— Q) mod 2n)

Transform Pairs: Discrete Fourier Transform

én] = % d[n — ng] <= %e‘jkzﬁwno 1 <= 6[k mod N] eTho R —s 8[(k — ko) mod N]

Fourier Properties

Cl.’L‘l[’I’L] + CQ.’L‘Q[n] — X1 (Q) + CQXQ(Q) (.’L‘l * Ig)[’n] == X1(Q)X2(Q)

(21 ® 22)[n] <= Xi[k|Xa[k] z1[n]zaln] <= o= (X1 * X2)(Q)
z[-n] <= X(-Q) z[nM] <= X(3)
z[n —ng] <= e M X(Q) engn] <= X(2— Q)

nzn] < jd%X(Q) %w(t) = jwX(w)




