
6.300: Signal Processing

Quiz #2 Review (Lecture)
• Quiz #2 is in Walker (50-340) on Tuesday, 11/04 at 2:00 p.m.
• Bring two 8.5”× 11.0” pages (four sides) of handwritten notes.

November 2025



Calculus Analogy
You wouldn’t want to walk into a calculus quiz without knowing

d sin(θ)
dθ

= cos(θ)

by heart, right? Going back to the derivation wastes precious time!

lim
φ→0

sin(θ + φ)− sin(θ)

φ

lim
φ→0

sin(θ) cos(φ) + sin(φ) cos(θ)− sin(θ)

φ

lim
φ→0

[
sin(φ)

φ

]
︸ ︷︷ ︸
1 as φ→ 0

cos(θ) + lim
φ→0

[
cos(φ)− 1

φ

]
︸ ︷︷ ︸

0 as φ→ 0

sin(θ)



Calculus Analogy
To do well on a calculus quiz,
you probably need to know at least a few things by heart.

common functions and their derivatives

d(tn)
dt

= ntn−1 d
(
eλt

)
dt

= λeλt d sin(t)
dt

= cos(t)

differentiation rules

d
[
c1f (t) + c2g(t)

]
dt

= c1
df
dt

+ c2
dg
dt

dg
(
f (t)

)
dt

=
dg
df

· df
dt



Calculus Analogy
To do well on a signal processing quiz,
you probably need to know at least a few things by heart.

common signals and their Fourier transforms

δ[n− n0] ⇐⇒ e−jΩn0 e jΩ0n ⇐⇒ 2πδ
(
(Ω− Ω0)mod2π

)
Fourier properties

c1x1[n] + c2x2[n] ⇐⇒ c1X1(Ω) + c2X2(Ω)

x[n− n0] ⇐⇒ e−jΩn0X(Ω)

e jΩ0nx[n] ⇐⇒ X(Ω− Ω0)



Fourier Transforms (CT)

time domain ⇐⇒ frequency domain
δ(t) ⇐⇒ 1

δ(t− t0) ⇐⇒ e−jωt0

1 ⇐⇒ 2πδ(ω)
e jω0t ⇐⇒ 2πδ(ω − ω0)

Duality: Notice the common trend in transform pairs.

x(t) ⇐⇒ X(ω)

X(t) ⇐⇒ 2πx(−ω)



Fourier Transforms (DT)
All discrete-time Fourier transforms are 2π-periodic.

time domain ⇐⇒ frequency domain
δ[n] ⇐⇒ 1

δ[n− n0] ⇐⇒ e−jΩn0

1 ⇐⇒ 2πδ(Ωmod2π)
e jΩ0n ⇐⇒ 2πδ

(
(Ω− Ω0)mod2π

)
Duality: Not so easy with discrete-time Fourier transforms.
x[n] is discrete in time, but X(Ω) is continuous in frequency!



Some Fourier Properties

time domain ⇐⇒ frequency domain
c1x1[n] + c2x2[n] ⇐⇒ c1X1(Ω) + c2X2(Ω)

(x1 ∗ x2)[n] ⇐⇒ X1(Ω)X2(Ω)

x1[n]x2[n] ⇐⇒ 1
2π

(
X1 ∗ X2

)
(Ω)

x[−n] ⇐⇒ X(−Ω)

x[nM] ⇐⇒ X( Ω
M )

x[n− n0] ⇐⇒ e−jΩn0X(Ω)

e jΩ0nx[n] ⇐⇒ X(Ω− Ω0)

n x[n] ⇐⇒ j d
dΩX(Ω)

d
dtx(t) ⇐⇒ jωX(ω)



Linearity and Time-Invariance

Linearity
x1[n] → linear system → y1[n]

x2[n] → linear system → y2[n]

c1x1[n] + c2x2[n] → linear system → c1y1[n] + c2y2[n]

Time-Invariance

x[n] → time-invariant system → y[n]

x[n− n0] → time-invariant system → y[n− n0]



Check Yourself
Are the following systems linear and time-invariant?
(Recall: Together, additivity and homogeneity imply linearity.)

y[n] = 1
3x[n− 1] + 1

3x[n] +
1
3x[n+ 1]

y[n] = Mx[n] + B for constantsM andB

y(t) =
ˆ t

0
x(τ )dτ



Check Yourself

y[n] = 1
3x[n− 1] + 1

3x[n] +
1
3x[n+ 1]

Linear? By inspection, yes!

x[n] = c1x1[n] + c2x2[n] → LTI → y[n] = c1y1[n] + c2y2[n]

Time-invariant? By inspection, yes!

x[n− n0] → LTI → y[n− n0]



Check Yourself

y[n] = Mx[n] + B for constantsM andB

Linear? IfM 6= 0 and B = 0, yes.

x[n] = c1x1[n] + c2x2[n] → LTI → y[n] = c1y1[n] + c2y2[n]

Time-invariant? Yes.

x[n− n0] → LTI → y[n− n0]



Check Yourself

y(t) =
ˆ t

0
x(τ )dτ

Linear? Yes. Integration is a linear operation.ˆ t

0
c1x1(τ) + c2x2(τ)dτ = c1

ˆ t

0
x1(τ)dτ + c2

ˆ t

0
x2(τ)dτ

Time-invariant? No.

y(t− t0) =
ˆ t−t0

0
x(τ)dτ 6=

ˆ t−t0

−t0
x(τ ′)dτ ′ for τ ′ = τ − t0



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response

Difference Equations and Differential Equations
Impose time-domain constraints on the input and output.

y[n] = 1
2y[n− 1] + x[n]

dy(t)
dt

= x(t)− 1
2y(t)



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response

Unit-Sample Response
Characterize a system by a single time-domain signal.

δ[n] → LTI → h[n]

x[n] → LTI →
∑
k

h[k]x[n− k]



Convolution

Convolving x[n] with δ[n− n0] time-shifts x[n].

h[n] = δ[n− n0] =⇒ (x ∗ h)[n] = x[n− n0]

Convolving x[n] with a sum of scaled and time-shifted δ sig-
nals produces a sum of scaled and time-shifted x[n].

h[n] =
∑
k

h[k]δ[n− k]

(x ∗ h)[n] =
∑
k

h[k]︸︷︷︸
scale

x[n− k]︸ ︷︷ ︸
time-shift



Convolution

(x ∗ h)[n] is a superposition of scaled and time-shifted x[n].

...
(x ∗ h)[n] = h[0] x[n] +

h[1] x[n− 1] +
h[2] x[n− 2] +
...



Convolution is Commutative

(x ∗ h)[n] is a superposition of scaled and time-shifted h[n].

...
(x ∗ h)[n] = x[0] h[n] +

x[1] h[n− 1] +
x[2] h[n− 2] +
...



Convolution

n = 0 1 2 3 4 5 6 7

x[n] = 1 1 1 1 0 0 0 0

h[n] = 1 2 3 0 0 0 0 0

n = 0 1 2 3 4 5 6 7

h[0] x[n− 0] = 1 1 1 1 0 0 0 0

h[1] x[n− 1] = 0 2 2 2 2 0 0 0

h[2] x[n− 2] = 0 0 3 3 3 3 0 0

(x ∗ h)[n] = 1 3 6 6 5 3 0 0



Check Yourself
Consider an LTI system with unit-sample response h[n].

h[n] = δ[n] + δ[n− 1] + δ[n− 2]
Suppose that the input to the system is x[n].

x[n] = cos
(2π

3 n
)

Determine a closed-form expression for the output y[n].



Check Yourself

h[n] = δ[n] + δ[n− 1] + δ[n− 2]

y[n] = (x ∗ h)[n] = x[n] + x[n− 1] + x[n− 2]

x[n] = cos
( 2π

3 n
)
is periodic in N = 3 samples.

x[0] = 1 x[1] = −1
2 x[2] = −1

2

x[n] + x[n− 1] + x[n− 2] = 0 for all n



Check Yourself

Alternatively, think of the frequency response.

H(Ω) = 1+ e−jΩ + e−j2Ω

= e jΩ
(
e−jΩ + 1+ e−jΩ)

= e jΩ
(
1+ 2 cos(Ω)

)
x[n] = cos

(2π
3
)

⇐⇒ X(Ω) = 1
2e

j 2π3 n + 1
2e

−j 2π3 n

H
(2π

3
)
= 0 =⇒ Y(Ω) = 0 ⇐⇒ y[n] = 0



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response

Frequency Response
Complex exponentials are eigenfunctions of LTI systems!
Characterize a system by how it shapes a signal’s spectrum.

e jΩn → LTI → H(Ω)e jΩn

X(Ω) → LTI → H(Ω)X(Ω)



Eigenfunctions (if you’re interested)

An eigenvalue-eigenvector pair (λ,v) satisfy the eigenequation.

Av = λv
Likewise, eigenvalue-eigenfunction pairs satisfy eigenequations.

d
dt
{
eλt

}
= λeλt R

{
λn}︸ ︷︷ ︸

right shift

= λ−1λn

Exponential functions eλt are eigenfunctions of the d/dt operator.
Set λ = jω =⇒ Eigenfunctions are CTFT basis functions!

Geometric sequences λn are eigenfunctions of theR operator.
Set λ = e jΩ =⇒ Eigenfunctions are DTFT basis functions!



Eigenfunctions (if you’re interested)

Let P(A) denote a polynomial in A. P(A) has the same eigenvectors
vk, but the corresponding eigenvalues are P(λk).

P(A)v = P(λ)v
Likewise . . .

P
(

d
dt

)
eλt = P(λ)eλt

P(R)λn = P(λ−1)λn

Expressing a signal in a basis of eigenfunctions facilitates analysis.
(e.g., The homogeneous solution to a linear differential equation with constant coefficients is a linear combination of
eigenfunctions that lie in the null space of the polynomial differential operator.)



Eigenfunctions (if you’re interested)

How do we interpret Ax = b?

• express x =
∑

k ckvk in basis spanned by eigenvectors of A
• scale each eigenvector vk by the eigenvalue λk
• b =

∑
k ckλkvk

How do we interpret x[n] → LTI → y[n] ?

• express x[n] = 1
2π
´
2π X(Ω)e jΩndΩ in eigenfunction basis

• scale each eigenfunction e jΩn by the eigenvalue H(Ω)

• y[n] = 1
2π
´
2π Y(Ω)e

jΩndΩ = 1
2π
´
2π H(Ω)X(Ω)e jΩndΩ



Signals and Systems

(Graphic: Denny Freeman)



Signals and Systems

Example: Mass on a Spring

(Graphic: Denny Freeman)



Signals and Systems
Example: Mass on a Spring
• signals: position x(t) and position y(t)
• parameters: massM and spring constant K

Md2y(t)
dt2

= K
(
x(t)− y(t)

)
H(ω) =

Y(ω)
X(ω)

=
ω2
0

ω2
0 − ω2 ω0 =

√
K
M

cos(ωt) → LTI → |H(ω)| cos
(
ωt+ ∠H(ω)

)
very responsive to sinusoidal oscillations at ω ≈ ω0



Signals and Systems

Example: Series RLC Circuit

(Graphic: Denny Freeman)



Signals and Systems
Example: Series RLC Circuit
• signals: input voltage vi(t) and output voltage vo(t)
• parameters: resistance R, inductance L, and capacitance C

Cd2vo(t)
dt2

=
1
L
(
vi(t)− RCdvo(t)

dt
− vo(t)

)
H(ω) =

Vo(ω)

Vi(ω)
=

ω2
0

ω2
0 +

1
τ jω − ω2 ω0 =

√
1
LC

τ =
L
R

cos(ωt) → LTI → |H(ω)| cos
(
ωt+ ∠H(ω)

)
damped harmonic oscillator



Signals and Systems

Example: Phosphorylation Cycle

(Biomolecular Feedback Systems, D. Del Vecchio and R. M. Murray)



Signals and Systems
Example: Phosphorylation Cycle
• signals: kinase x(t) and phosphorylated substrate y(t)
• parameters: production rate β and decay rate γ

dy(t)
dt

= βx(t)− γy(t) ⇐⇒ jωY(ω) = βX(ω)− γY(ω)

H(ω) =
Y(ω)
X(ω)

=
β

γ + jω∣∣H(ω)
∣∣ = β√

γ2 + ω2
∠H(ω) = − tan−1

(
ω

γ

)

low-pass filter: unresponsive to rapidly-varying stimuli



Check Yourself
Difference Equation → Unit-Sample Response
Determine the unit-sample response h[n] for the following linear
constant-coefficient difference equation. Assume that the system is
initially at rest: For n < 0, x[n] = y[n] = 0.

y[n] = 1
2y[n− 1] + x[n]



Check Yourself

We could set x[n] = δ[n] and notice that the response y[n] =
h[n] is a decaying geometric sequence. Alternatively, we could
determine the frequency response H(Ω) by computing the
DTFT of the difference equation. The unit-sample response
h[n] is the inverse DTFT of the frequency response H(Ω).

Y(Ω) = 1
2e

−jΩY(Ω) + X(Ω) ⇐⇒ H(Ω) =
Y(Ω)
X(Ω)

=
1

1− 1
2e−jΩ

h[n] = 1
2π

ˆ
2π

H(Ω)ejΩndΩ =
1
2π

ˆ
2π

ejΩn

1− 1
2e−jΩ dΩ =

( 1
2
)nu[n]



Check Yourself
Frequency Response → Differential Equation
Determine a linear ordinary differential equation with constant
coefficients with frequency response H(ω).

H(ω) =
1− jω
1− 4ω2



Check Yourself

Multiplication by jω in the frequency domain corre-
sponds to differentiation with respect to t in the time
domain.

H(ω) =
Y(ω)
X(ω)

=
1− jω

1 + 4(jω)2

y(t) + 4 d2y(t)
dt2

= x(t)− dx(t)
dt



LTI Systems
Three representations for LTI systems:
• difference equation (DT) or differential equation (CT)
• unit-sample response (DT) or impulse response (CT)
• frequency response



Communications Systems

Amplitude Modulation

x(t) → AM → y(t) = x(t) cos(ωct)

Is an amplitude modulator a linear system?
Is an amplitude modulator a time-invariant system?



Communications Systems

Amplitude Modulation

x(t) → AM → y(t) = x(t) cos(ωct)

Is an amplitude modulator a linear system?
Is an amplitude modulator a time-invariant system?

Linear? Yes.(
c1x1(t) + c2x2(t)

)
cos(ωct) = c1x1(t) cos(ωct) + c2x2(t) cos(ωct)

Time-invariant? No! The carrier cos(ωct) is time-varying.
The systemgenerates newnon-zero frequencies in the output!



Communications Systems

Amplitude Modulation
Transmission: Multiply x(t) by sinusoidal carrier signal c(t)
(modulation) and transmit the modulated signal y(t) = x(t)c(t).
Reception: Recover x(t) from the amplitude-modulated signal y(t)
through demodulation and low-pass filtering.

c(t) = cos(ωct) = 1
2e

jωct + 1
2e

−jωct

y(t) = x(t)c(t) ⇐⇒ Y(ω) = 1
2π
(
X ∗ C

)
(ω)

Y(ω) = 1
2X(ω − ωc) +

1
2X(ω + ωc)︸ ︷︷ ︸

copies of X(ω) shifted outward by ωc



More Modulation
We examined amplitude modulation in class. Perhaps you’ve
heard of frequency modulation (FM) or phase modulation (PM)
— but you don’t need to know these for the quiz, per se.

Sinusoidal Modulation

y(t) = A cos(ωt+ φ)

• amplitude (AM) time-varying amplitude A = A(t)
• frequency (FM) time-varying frequency ω = ω(t)
• phase (PM) time-varying phase φ = φ(t)



DT Fourier Representations
The DTFS is for periodic signals. No real-world periodic signals!
• finite summation over n (infinite-length periodic signals)
• frequency variable k of discrete domain

The DTFT may only be computed in theory.
• infinite summation over n (infinite-length aperiodic signals)
• frequency variable Ω of continuous domain

The DFT can be computed in practice.
• finite summation over n (finite-length aperiodic signals)
• frequency variable k of discrete domain

The FFT refers to a family of algorithms for computing the DFT.

The STFT is a “moving-window Fourier transform.”
• For practical computation, use the DFT.



Discrete Fourier Transform
The DFT is a discrete-time, discrete-frequency Fourier transform.

• finite-length signals xw[n] = x[n]w[n]
• discrete in time (n) N time-samples
• discrete in frequency (k) N frequency-samples

Discrete Fourier Transform

X[k] = 1
N

N−1∑
n=0

x[n]e−jk 2π
N n analysis

x[n] =
N−1∑
k=0

X[k]e jk
2π
N n synthesis



Discrete Fourier Transform
DFT vs. Discrete-Time Fourier Series (DTFS)
The length-N DFT is equivalent to the discrete-time Fourier series
of an N-periodic extension of windowed signal xw[n] = x[n]w[n].

X[k] = 1
N

N−1∑
n=0

xw[nmodN]e−jk 2π
N n

DFT vs. Discrete-Time Fourier Transform (DTFT)

X[k] = 1
NXw

(2π
N k

)
DFT frequency resolution:

fs
N hertz or 2π

N radians



(Graphic: Denny Freeman)



Window Functions
Multiplying x[n] by the window function w[n] corresponds to
convolving the DTFT of x[n] with the DTFT of w[n].

Windowing

xw[n] = x[n]w[n] ⇐⇒ Xw(Ω) =
1
2π
(
X ∗W

)
(Ω)

long w[n] ⇐⇒ narrow W(Ω)

There are many window functions.

SciPy: Bartlett, Bartlett-Hann, Blackman, Blackman-Harris,
Bohman, box-car, cosine, discrete prolate spheroidal sequences,
Dolph-Chebyshev, exponential, flat-top, Gaussian, generalized
Hamming, Hamming, Hann, Kaiser, Kaiser-Bessel, Lanczos,
Nutall, Parzen, Taylor, triangular, Tukey, . . .



Window Functions

The window to use depends on the task at hand.
• What’s most important? Narrow mainlobe? Low sidelobes?



Window Functions



DFT: Circular Convolution
Multiplication of N-point DFTs in the frequency domain
corresponds to circular convolution in the time domain.

(x ~ h)[n] = NDFT−1
N {XN [k]HN [k]}

=

N−1∑
m=0

x[m]h
[
(n−m)modN

]
Circular convolution seems complicated, but it is really simple.
You do need to know how to do regular convolution, though.

Circular Convolution
• Compute the regular (non-circular) convolution.
• Wrap the result into a length-N interval.
• Periodically extend this length-N interval.



Circular Convolution

n = 0 1 2 3 4 5 6 7

x[n] = 1 1 1 1 0 0 0 0

h[n] = 1 2 3 0 0 0 0 0

n = 0 1 2 3 4 5 6 7

(x ∗ h)[n] = 1 3 6 6 5 3 0 0

(x ~ h)6[n] = 1 3 6 6 5 3 1 3

(x ~ h)5[n] = 4 3 6 6 5 4 3 6

(x ~ h)4[n] = 6 6 6 6 6 6 6 6



Check Yourself
Suppose that x[n] = 0 and h[n] = 0 for n /∈ {0, 1, 2, 3, . . . , 9}.

y[n] = DTFT−1{X(Ω)H(Ω)
}︸ ︷︷ ︸

(x ∗ h)[n]

z[n] = DFT−1
5

{
X
( 2π

5 k
)
H
( 2π

5 k
)}︸ ︷︷ ︸

(x~ h)[n]

n 0 1 2 3 4 5 6 7 8 9

y[n] 4 3 7 7 0 A B C D E

z[n] 4 3 14 13 1 4 3 14 13 1

Determine appropriate values for the constants A, B, C, D, and E.
Give a few choices of x[n] and h[n] that produce y[n].



Check Yourself
Suppose that x[n] = 0 and h[n] = 0 for n /∈ {0, 1, 2, 3, . . . , 9}.

y[n] = DTFT−1{X(Ω)H(Ω)
}︸ ︷︷ ︸

(x ∗ h)[n]

z[n] = DFT−1
5

{
X
( 2π

5 k
)
H
( 2π

5 k
)}︸ ︷︷ ︸

(x~ h)[n]

n 0 1 2 3 4 5 6 7 8 9

y[n] 4 3 7 7 0 A B C D E

z[n] 4 3 14 13 1 4 3 14 13 1

Determine appropriate values for the constants A, B, C, D, and E.
Give a few choices of x[n] and h[n] that produce y[n].

A = 0 B = 0 C = 7 D = 6 E = 1



Short-Time Fourier Transforms
Think of short-time Fourier transforms as “moving-window
Fourier transforms.”

Any Fourier transform can be a short-time Fourier transform.

Short-Time CTFT: X(ω, τ) =

ˆ ∞

−∞
x(t)w(t− τ)︸ ︷︷ ︸

window

e−jωtdt

Short-Time DTFT: X(Ω,m] =

∞∑
n=−∞

x[n]w[n−m]︸ ︷︷ ︸
window

e−jΩn

Window Functions

xw[n] = x[n]w[n] ⇐⇒ Xw(Ω) =
1
2π
(
X ∗W

)
(Ω)



Spectrograms
Examine the power of a signal’s time-varying spectrum.

(spectrogram of “Les Patineurs” performed on Hammond organ)



Overlap-Add Method
How can we process long signals block-by-block? Divide the input
x[n] into blocks — each of length s. Convolve each block with h[n].

The output is y[n] = y0[n] + y1[n] + y2[n] + · · · Hence overlap-add.
(Graphic: Denny Freeman)



Fast Fourier Transform (FFT)
Gauss, circa 1805: “. . . truly, that method greatly reduces the
tediousness of mechanical calculations . . . ”

Radix-2 Decimation-in-Time Algorithm
• Split a length-N DFT into a sum of two length-(N/2) DFTs.

XN[k] = 1
2

(
Xeven

N/2 [k] +Wk
NXodd

N/2[k]
)

WN = e−j2πN (Nth root of unity, or “twiddle factor”)

• Repeat (↑) until N/2 = 1, when we can’t divide by 2 anymore.
• The DFT of a length-1 signal is the signal itself: X[0] = x[0].



FFT: Decimation in Time

(Graphic: Denny Freeman)



Summary
• Fourier transform pairs and properties
• linearity and time-invariance
• difference equations (DT) and differential equations (CT)
• unit-sample response (DT) and impulse response (CT)
• frequency response
• convolution and filtering
• modulation and communications systems
• discrete Fourier transform (DFT)
• window functions
• circular convolution
• short-time Fourier transforms
• fast Fourier transform (FFT)



“Signals and Systems” Subjects
Signal Processing
6.300 Signal Processing fall, spring
6.301 Signals, Systems, and Inference spring
6.302 Fundamentals of Music Processing fall
6.700 Discrete-Time Signal Processing fall
6.701 Digital Image Processing spring
6.S955 Machine Learning for Signal Processing spring

Related Subjects
6.200 Circuits and Electronics fall, spring
6.310 Dynamical Systems and Control fall, spring
6.480 Biomedical Imaging with MRI fall
6.C27 Computational Imaging fall
18.065 Matrix Methods spring
21M.569 Acoustics, Synthesis, and Audio Effects spring


