6.300: Signal Processing

Quiz #2 Review (Lecture)

- Quiz #2 is in Walker (50-340) on Tuesday, 11/04 at 2:00 p.m.
- Bring two $8.5'' \times 11.0''$ pages (four sides) of handwritten notes.

Calculus Analogy

You wouldn't want to walk into a calculus quiz without knowing

$$\frac{d\sin(\theta)}{d\theta} = \cos(\theta)$$

by heart, right? Going back to the derivation wastes precious time!

$$\lim_{\phi \to 0} \frac{\sin(\theta + \phi) - \sin(\theta)}{\phi}$$

$$\lim_{\phi \to 0} \frac{\sin(\theta) \cos(\phi) + \sin(\phi) \cos(\theta) - \sin(\theta)}{\phi}$$

$$\lim_{\phi \to 0} \left[\frac{\sin(\phi)}{\phi} \right] \cos(\theta) + \lim_{\phi \to 0} \left[\frac{\cos(\phi) - 1}{\phi} \right] \sin(\theta)$$

$$\lim_{\phi \to 0} \frac{\sin(\phi) \cos(\theta) + \sin(\phi) \cos(\phi)}{\phi} = \frac{\cos(\phi) - 1}{\phi} \cos(\theta)$$

Calculus Analogy

To do well on a calculus quiz, you probably need to know at least a few things by heart.

common functions and their derivatives

$$\frac{d(t^n)}{dt} = nt^{n-1} \qquad \frac{d(e^{\lambda t})}{dt} = \lambda e^{\lambda t} \qquad \frac{d\sin(t)}{dt} = \cos(t)$$

differentiation rules

$$\frac{d \left[c_1 f(t) + c_2 g(t) \right]}{dt} = c_1 \frac{d f}{d t} + c_2 \frac{d g}{d t} \qquad \frac{d g \left(f(t) \right)}{d t} = \frac{d g}{d f} \cdot \frac{d f}{d t}$$

Calculus Analogy

To do well on a signal processing quiz, you probably need to know at least a few things by heart.

common signals and their Fourier transforms

$$\delta[n-n_0] \iff e^{-j\Omega n_0} \qquad e^{j\Omega_0 n} \iff 2\pi\delta((\Omega-\Omega_0) \operatorname{mod} 2\pi)$$

Fourier properties

$$c_1 x_1[n] + c_2 x_2[n] \iff c_1 X_1(\Omega) + c_2 X_2(\Omega)$$
$$x[n - n_0] \iff e^{-j\Omega n_0} X(\Omega)$$
$$e^{j\Omega_0 n} x[n] \iff X(\Omega - \Omega_0)$$

Fourier Transforms (CT)

time domain
$$\iff$$
 frequency domain $\delta(t) \iff 1$ $\delta(t-t_0) \iff e^{-j\omega t_0}$ $1 \iff 2\pi\delta(\omega)$ $e^{j\omega_0 t} \iff 2\pi\delta(\omega-\omega_0)$

$$x(t) \iff X(\omega)$$

 $X(t) \iff 2\pi x(-\omega)$

Fourier Transforms (DT)

All discrete-time Fourier transforms are 2π -periodic.

$$\begin{array}{ccc} \mathbf{time\ domain} & \Longleftrightarrow & \mathbf{frequency\ domain} \\ & \delta[n] & \Longleftrightarrow & 1 \\ & \delta[n-n_0] & \Longleftrightarrow & e^{-j\Omega n_0} \\ & 1 & \Longleftrightarrow & 2\pi\delta(\Omega\,\mathrm{mod}\,2\pi) \\ & e^{j\Omega_0 n} & \Longleftrightarrow & 2\pi\delta\big((\Omega-\Omega_0)\,\mathrm{mod}\,2\pi\big) \end{array}$$

Duality: Not so easy with discrete-time Fourier transforms. x[n] is discrete in time, but $X(\Omega)$ is continuous in frequency!

Some Fourier Properties

```
time domain \iff frequency domain
c_1x_1[n] + c_2x_2[n] \iff c_1X_1(\Omega) + c_2X_2(\Omega)
       (x_1 * x_2)[n] \iff X_1(\Omega)X_2(\Omega)
         x_1[n]x_2[n] \iff \frac{1}{2\pi}(X_1 * X_2)(\Omega)
              x[-n] \iff X(-\Omega)
              x[nM] \iff X(\frac{\Omega}{M})
         x[n-n_0] \iff e^{-j\Omega n_0}X(\Omega)
          e^{j\Omega_0 n} x[n] \iff X(\Omega - \Omega_0)
              n x[n] \iff j \frac{d}{d\Omega} X(\Omega)
               \frac{d}{dt}x(t) \iff j\omega X(\omega)
```

Linearity and Time-Invariance

Linearity

$$x_1[n] o [ext{linear system}] o y_1[n]$$
 $x_2[n] o [ext{linear system}] o y_2[n]$
 $c_1x_1[n] + c_2x_2[n] o [ext{linear system}] o c_1y_1[n] + c_2y_2[n]$

Time-Invariance

$$x[n] \rightarrow \boxed{\text{time-invariant system}} \rightarrow y[n]$$

 $x[n-n_0] \rightarrow \boxed{\text{time-invariant system}} \rightarrow y[n-n_0]$

Are the following systems linear and time-invariant? (Recall: Together, additivity and homogeneity imply linearity.)

$$y[n] = \frac{1}{3}x[n-1] + \frac{1}{3}x[n] + \frac{1}{3}x[n+1]$$

$$y[n] = Mx[n] + B$$
 for constants M and B

$$y(t) = \int_0^t x(\tau)d\tau$$

$$y[n] = \frac{1}{3}x[n-1] + \frac{1}{3}x[n] + \frac{1}{3}x[n+1]$$

Linear? By inspection, yes!

$$x[n] = c_1 x_1[n] + c_2 x_2[n] \to \boxed{\textbf{LTI}} \to y[n] = c_1 y_1[n] + c_2 y_2[n]$$

Time-invariant? By inspection, yes!

$$x[n-n_0] \rightarrow \boxed{\textbf{LTI}} \rightarrow y[n-n_0]$$

$$y[n] = Mx[n] + B$$
 for constants M and B

Linear? If $M \neq 0$ and B = 0, yes.

$$x[n] = c_1 x_1[n] + c_2 x_2[n] \to \text{LTI} \to y[n] = c_1 y_1[n] + c_2 y_2[n]$$

Time-invariant? Yes.

$$x[n-n_0] \rightarrow \boxed{\textbf{LTI}} \rightarrow y[n-n_0]$$

$$y(t) = \int_0^t x(\tau)d\tau$$

Linear? Yes. Integration is a linear operation.

$$\int_0^t c_1 x_1(\tau) + c_2 x_2(\tau) d\tau = c_1 \int_0^t x_1(\tau) d\tau + c_2 \int_0^t x_2(\tau) d\tau$$

Time-invariant? No.

$$y(t - t_0) = \int_0^{t - t_0} x(\tau) d\tau \neq \int_{-t_0}^{t - t_0} x(\tau') d\tau' \text{ for } \tau' = \tau - t_0$$

Three representations for LTI systems:

- difference equation (DT) or differential equation (CT)
- unit-sample response (DT) or impulse response (CT)
- frequency response

Three representations for LTI systems:

- difference equation (DT) or differential equation (CT)
- unit-sample response (DT) or impulse response (CT)
- frequency response

Difference Equations and Differential Equations

Impose time-domain constraints on the input and output.

$$y[n] = \frac{1}{2}y[n-1] + x[n]$$
$$\frac{dy(t)}{dt} = x(t) - \frac{1}{2}y(t)$$

Three representations for LTI systems:

- difference equation (DT) or differential equation (CT)
- unit-sample response (DT) or impulse response (CT)
- frequency response

Unit-Sample Response

Characterize a system by a single time-domain signal.

$$\delta[n] \to \boxed{\mathbf{LTI}} \to h[n]$$

$$x[n] \to \boxed{\mathbf{LTI}} \to \sum_{k} h[k]x[n-k]$$

Convolution

Convolving x[n] with $\delta[n-n_0]$ time-shifts x[n].

$$h[n] = \delta[n - n_0] \implies (x * h)[n] = x[n - n_0]$$

Convolving x[n] with a sum of scaled and time-shifted δ signals produces a sum of scaled and time-shifted x[n].

$$h[n] = \sum_{k} h[k]\delta[n-k]$$
$$(x*h)[n] = \sum_{k} \underbrace{h[k]}_{\text{scale time-shift}} \underbrace{x[n-k]}_{\text{time-shift}}$$

Convolution

(x * h)[n] is a superposition of scaled and time-shifted x[n].

$$(x*h)[n] = h[0] x[n] + h[1] x[n-1] + h[2] x[n-2] + \vdots$$

Convolution is Commutative

```
(x * h)[n] is a superposition of scaled and time-shifted h[n].
 (x * h)[n] = x[0]h[n] +
                  x[1]h[n-1] +
                  x[2]h[n-2] +
```

Convolution

n	=	0	1	2	3	4	5	6	7
x[n]	=	1	1	1	1	0	0	0	0
h[n]	=	1	2	3	0	0	0	0	0

n	=	0	1	2	3	4	5	6	7
h[0] x[n-0]	=	1	1	1	1	0	0	0	0
h[1] x[n-1]	=	0	2	2	2	2	0	0	0
h[2] x[n-2]	=	0	0	3	3	3	3	0	0
(x*h)[n]	=	1	3	6	6	5	3	0	0

Consider an LTI system with unit-sample response h[n].

$$h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$$

Suppose that the input to the system is x[n].

$$x[n] = \cos\left(\frac{2\pi}{3}n\right)$$

Determine a closed-form expression for the output y[n].

$$h[n] = \delta[n] + \delta[n-1] + \delta[n-2]$$

$$y[n] = (x * h)[n] = x[n] + x[n-1] + x[n-2]$$

$$x[n] = \cos(\frac{2\pi}{3}n)$$
 is periodic in $N = 3$ samples.

$$x[0] = 1$$
 $x[1] = -\frac{1}{2}$ $x[2] = -\frac{1}{2}$

$$x[n] + x[n-1] + x[n-2] = 0$$
 for all n

Alternatively, think of the frequency response.

$$H(\Omega) = 1 + e^{-j\Omega} + e^{-j2\Omega}$$
$$= e^{j\Omega} \left(e^{-j\Omega} + 1 + e^{-j\Omega} \right)$$
$$= e^{j\Omega} \left(1 + 2\cos(\Omega) \right)$$

$$x[n] = \cos\left(\frac{2\pi}{3}\right) \iff X(\Omega) = \frac{1}{2}e^{j\frac{2\pi}{3}n} + \frac{1}{2}e^{-j\frac{2\pi}{3}n}$$
$$H\left(\frac{2\pi}{3}\right) = 0 \implies Y(\Omega) = 0 \iff y[n] = 0$$

Three representations for LTI systems:

- difference equation (DT) or differential equation (CT)
- unit-sample response (DT) or impulse response (CT)
- frequency response

Frequency Response

Complex exponentials are eigenfunctions of LTI systems! Characterize a system by how it shapes a signal's spectrum.

$$e^{j\Omega n} \to \boxed{\mathbf{LTI}} \to H(\Omega)e^{j\Omega n}$$
 $X(\Omega) \to \boxed{\mathbf{LTI}} \to H(\Omega)X(\Omega)$

Eigenfunctions (if you're interested)

An eigenvalue-eigenvector pair (λ, v) satisfy the eigenequation.

$$Av = \lambda v$$

Likewise, eigenvalue-eigenfunction pairs satisfy eigenequations.

$$\frac{d}{dt} \{e^{\lambda t}\} = \lambda e^{\lambda t} \qquad \underbrace{\mathcal{R}\{\lambda^n\}}_{\text{right shift}} = \lambda^{-1} \lambda^n$$

Exponential functions $e^{\lambda t}$ are eigenfunctions of the d/dt operator. Set $\lambda = j\omega$ \Longrightarrow Eigenfunctions are CTFT basis functions!

Geometric sequences λ^n are eigenfunctions of the \mathcal{R} operator. Set $\lambda = e^{j\Omega} \implies$ Eigenfunctions are DTFT basis functions!

Eigenfunctions (if you're interested)

Let P(A) denote a polynomial in A. P(A) has the same eigenvectors v_k , but the corresponding eigenvalues are $P(\lambda_k)$.

$$P(\mathbf{A})\mathbf{v} = P(\lambda)\mathbf{v}$$

Likewise ...

$$P\left(\frac{d}{dt}\right)e^{\lambda t} = P(\lambda)e^{\lambda t}$$
$$P(\mathcal{R})\lambda^n = P(\lambda^{-1})\lambda^n$$

Expressing a signal in a basis of eigenfunctions facilitates analysis.

 $(e.g., The\ homogeneous\ solution\ to\ a\ linear\ differential\ equation\ with\ constant\ coefficients\ is\ a\ linear\ combination\ of\ eigenfunctions\ that\ lie\ in\ the\ null\ space\ of\ the\ polynomial\ differential\ operator.)$

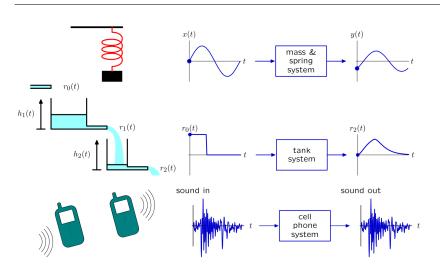
Eigenfunctions (if you're interested)

How do we interpret Ax = b?

- express $x = \sum_k c_k v_k$ in basis spanned by eigenvectors of A
- scale each eigenvector v_k by the eigenvalue λ_k
- $b = \sum_k c_k \lambda_k v_k$

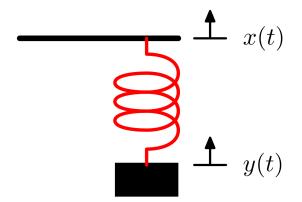
How do we interpret $x[n] \rightarrow \lfloor \mathbf{LTI} \rfloor \rightarrow y[n]$?

- express $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$ in eigenfunction basis
- scale each eigenfunction $e^{j\Omega n}$ by the eigenvalue $H(\Omega)$
- $y[n] = \frac{1}{2\pi} \int_{2\pi} Y(\Omega) e^{j\Omega n} d\Omega = \frac{1}{2\pi} \int_{2\pi} H(\Omega) X(\Omega) e^{j\Omega n} d\Omega$



(Graphic: Denny Freeman)

Example: Mass on a Spring



(Graphic: Denny Freeman)

Example: Mass on a Spring

- **signals:** position x(t) and position y(t)
- parameters: mass *M* and spring constant *K*

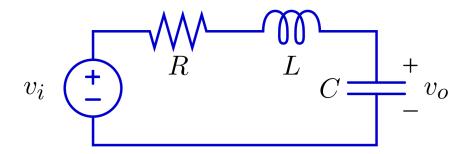
$$M\frac{d^2y(t)}{dt^2} = K(x(t) - y(t))$$

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{\omega_0^2}{\omega_0^2 - \omega^2} \qquad \omega_0 = \sqrt{\frac{K}{M}}$$

$$\cos(\omega t) \to \boxed{\mathbf{LTI}} \to |H(\omega)| \cos(\omega t + \angle H(\omega))$$

very responsive to sinusoidal oscillations at $\omega \approx \omega_0$

Example: Series RLC Circuit



(Graphic: Denny Freeman)

Example: Series RLC Circuit

- **signals:** input voltage $v_i(t)$ and output voltage $v_o(t)$
- parameters: resistance *R*, inductance *L*, and capacitance *C*

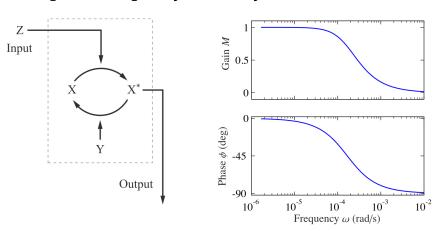
$$C\frac{d^2v_o(t)}{dt^2} = \frac{1}{L} \left(v_i(t) - RC\frac{dv_o(t)}{dt} - v_o(t) \right)$$

$$H(\omega) = \frac{V_o(\omega)}{V_i(\omega)} = \frac{\omega_0^2}{\omega_0^2 + \frac{1}{\tau} j\omega - \omega^2} \quad \omega_0 = \sqrt{\frac{1}{LC}} \quad \tau = \frac{L}{R}$$

$$\cos(\omega t) \to \boxed{\mathbf{LTI}} \to |H(\omega)| \cos(\omega t + \angle H(\omega))$$

damped harmonic oscillator

Example: Phosphorylation Cycle



(Biomolecular Feedback Systems, D. Del Vecchio and R. M. Murray)

Example: Phosphorylation Cycle

- **signals:** kinase x(t) and phosphorylated substrate y(t)
- parameters: production rate β and decay rate γ

$$\frac{dy(t)}{dt} = \beta x(t) - \gamma y(t) \iff j\omega Y(\omega) = \beta X(\omega) - \gamma Y(\omega)$$
$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{\beta}{\gamma + j\omega}$$
$$|H(\omega)| = \frac{\beta}{\sqrt{\gamma^2 + \omega^2}} \qquad \angle H(\omega) = -\tan^{-1}\left(\frac{\omega}{\gamma}\right)$$

low-pass filter: unresponsive to rapidly-varying stimuli

Difference Equation → **Unit-Sample Response**

Determine the unit-sample response h[n] for the following linear constant-coefficient difference equation. Assume that the system is initially at rest: For n < 0, x[n] = y[n] = 0.

$$y[n] = \frac{1}{2}y[n-1] + x[n]$$

We could set $x[n] = \delta[n]$ and notice that the response y[n] = h[n] is a decaying geometric sequence. Alternatively, we could determine the frequency response $H(\Omega)$ by computing the DTFT of the difference equation. The unit-sample response h[n] is the inverse DTFT of the frequency response $H(\Omega)$.

$$Y(\Omega) = \frac{1}{2}e^{-j\Omega}Y(\Omega) + X(\Omega) \iff H(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{1}{1 - \frac{1}{2}e^{-j\Omega}}$$

$$h[n] = \frac{1}{2\pi} \int_{2\pi} H(\Omega) e^{j\Omega n} d\Omega = \frac{1}{2\pi} \int_{2\pi} \frac{e^{j\Omega n}}{1 - \frac{1}{2}e^{-j\Omega}} d\Omega = \left(\frac{1}{2}\right)^n u[n]$$

Frequency Response → **Differential Equation**

Determine a linear ordinary differential equation with constant coefficients with frequency response $H(\omega)$.

$$H(\omega) = \frac{1 - j\omega}{1 - 4\omega^2}$$

Check Yourself

Multiplication by $j\omega$ in the frequency domain corresponds to differentiation with respect to t in the time domain.

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{1 - j\omega}{1 + 4(j\omega)^2}$$

$$y(t) + 4 \frac{d^2y(t)}{dt^2} = x(t) - \frac{dx(t)}{dt}$$

LTI Systems

Three representations for LTI systems:

- difference equation (DT) or differential equation (CT)
- unit-sample response (DT) or impulse response (CT)
- frequency response

Communications Systems

Amplitude Modulation

$$x(t) \rightarrow \boxed{\mathbf{AM}} \rightarrow y(t) = x(t)\cos(\omega_c t)$$

Is an amplitude modulator a linear system?
Is an amplitude modulator a time-invariant system?

Communications Systems

Amplitude Modulation

$$x(t) \rightarrow \boxed{\mathbf{AM}} \rightarrow y(t) = x(t)\cos(\omega_c t)$$

Is an amplitude modulator a linear system? Is an amplitude modulator a time-invariant system?

Linear? Yes.

$$(c_1x_1(t) + c_2x_2(t))\cos(\omega_c t) = c_1x_1(t)\cos(\omega_c t) + c_2x_2(t)\cos(\omega_c t)$$

Time-invariant? No! The carrier $\cos(\omega_c t)$ is time-varying. The system generates new non-zero frequencies in the output!

Communications Systems

Amplitude Modulation

Transmission: Multiply x(t) by sinusoidal carrier signal c(t) (modulation) and transmit the modulated signal y(t) = x(t)c(t).

Reception: Recover x(t) from the amplitude-modulated signal y(t) through demodulation and low-pass filtering.

$$c(t) = \cos(\omega_c t) = \frac{1}{2} e^{j\omega_c t} + \frac{1}{2} e^{-j\omega_c t}$$

$$y(t) = x(t)c(t) \iff Y(\omega) = \frac{1}{2\pi} (X * C)(\omega)$$

$$Y(\omega) = \underbrace{\frac{1}{2} X(\omega - \omega_c) + \frac{1}{2} X(\omega + \omega_c)}_{\text{copies of } X(\omega) \text{ shifted outward by } \omega_c}$$

More Modulation

We examined amplitude modulation in class. Perhaps you've heard of frequency modulation (FM) or phase modulation (PM) — but you don't need to know these for the quiz, per se.

Sinusoidal Modulation

$$y(t) = A\cos(\omega t + \phi)$$

- amplitude (AM) tin
- frequency (FM)
- phase (PM)

time-varying amplitude A = A(t)

time-varying frequency $\omega = \omega(t)$

time-varying phase $\phi = \phi(t)$

DT Fourier Representations

The **DTFS** is for periodic signals. No real-world periodic signals!

- finite summation over *n* (infinite-length periodic signals)
- frequency variable k of discrete domain

The **DTFT** may only be computed in theory.

- infinite summation over *n* (infinite-length aperiodic signals)
- frequency variable Ω of continuous domain

The **DFT** can be computed in practice.

- finite summation over n (finite-length aperiodic signals)
- frequency variable *k* of discrete domain

The **FFT** refers to a family of algorithms for computing the DFT.

The **STFT** is a "moving-window Fourier transform."

• For practical computation, use the DFT.

Discrete Fourier Transform

The DFT is a discrete-time, discrete-frequency Fourier transform.

- finite-length signals
- discrete in time (*n*)
- discrete in frequency (*k*)

 $x_w[n] = x[n]w[n]$

N time-samples

N frequency-samples

Discrete Fourier Transform

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N}n} \quad \text{analysis}$$

$$x[n] = \sum_{N=1}^{N-1} X[k]e^{jk\frac{2\pi}{N}n}$$
 synthesis

Discrete Fourier Transform

DFT vs. Discrete-Time Fourier Series (DTFS)

The length-N DFT is equivalent to the discrete-time Fourier series of an N-periodic extension of windowed signal $x_w[n] = x[n]w[n]$.

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x_w[n \mod N] e^{-jk\frac{2\pi}{N}n}$$

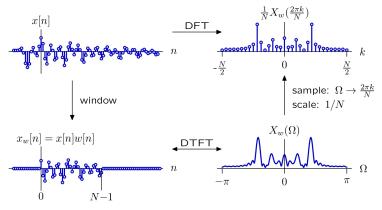
DFT vs. Discrete-Time Fourier Transform (DTFT)

$$X[k] = \frac{1}{N} X_w \left(\frac{2\pi}{N} k \right)$$

DFT frequency resolution: $\frac{f_s}{N}$ hertz or $\frac{2\pi}{N}$ radians

Relation Between DFT and DTFT

Graphical depiction of relation between DFT and DTFT.



While sampling and scaling are important, it is the **windowing** that most affects frequency content.

(Graphic: Denny Freeman)

Window Functions

Multiplying x[n] by the window function w[n] corresponds to convolving the DTFT of x[n] with the DTFT of w[n].

Windowing

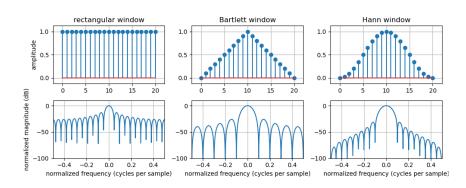
$$x_w[n] = x[n]w[n] \iff X_w(\Omega) = \frac{1}{2\pi}(X * W)(\Omega)$$

long $w[n] \iff$ narrow $W(\Omega)$

There are many window functions.

SciPy: Bartlett, Bartlett-Hann, Blackman, Blackman-Harris, Bohman, box-car, cosine, discrete prolate spheroidal sequences, Dolph-Chebyshev, exponential, flat-top, Gaussian, generalized Hamming, Hamming, Hann, Kaiser, Kaiser-Bessel, Lanczos, Nutall, Parzen, Taylor, triangular, Tukey, ...

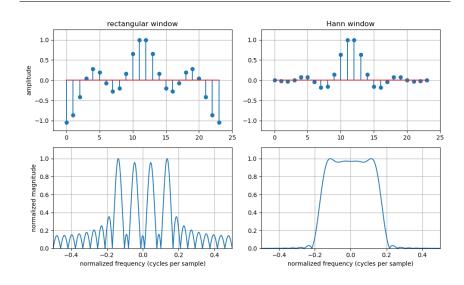
Window Functions



The window to use depends on the task at hand.

• What's most important? Narrow mainlobe? Low sidelobes?

Window Functions



DFT: Circular Convolution

Multiplication of *N*-point DFTs in the frequency domain corresponds to circular convolution in the time domain.

$$(x \circledast h)[n] = N \operatorname{DFT}_{N}^{-1} \{X_{N}[k]H_{N}[k]\}$$
$$= \sum_{m=0}^{N-1} x[m]h \Big[(n-m) \operatorname{mod} N \Big]$$

Circular convolution seems complicated, but it is really simple. You do need to know how to do regular convolution, though.

Circular Convolution

- Compute the regular (non-circular) convolution.
- Wrap the result into a length-*N* interval.
- Periodically extend this length-*N* interval.

Circular Convolution

n	=	0	1	2	3	4	5	6	7
x[n]	=	1	1	1	1	0	0	0	0
h[n]	=	1	2	3	0	0	0	0	0

nn	=	0	1	2	3	4	5	6	7
(x*h)[n]	=	1	3	6	6	5	3	0	0
$(x \circledast h)_6[n]$	=	1	3	6	6	5	3	1	3
$(x \circledast h)_5[n]$	=	4	3	6	6	5	4	3	6
$(x\circledast h)_4[n]$	=	6	6	6	6	6	6	6	6

Check Yourself

Suppose that x[n] = 0 and h[n] = 0 for $n \notin \{0, 1, 2, 3, ..., 9\}$.

$$y[n] = \underbrace{\mathrm{DTFT}^{-1}\big\{X(\Omega)H(\Omega)\big\}}_{(x*h)[n]} \qquad z[n] = \underbrace{\mathrm{DFT}_5^{-1}\big\{X\big(\frac{2\pi}{5}k\big)H\big(\frac{2\pi}{5}k\big)\big\}}_{(x\circledast h)[n]}$$

n	0	1	2	3	4	5	6	7	8	9
y[n]	4	3	7	7	0	A	В	С	D	E
$\overline{z[n]}$	4	3	14	13	1	4	3	14	13	1

Determine appropriate values for the constants A, B, C, D, and E. Give a few choices of x[n] and h[n] that produce y[n].

Check Yourself

Suppose that x[n] = 0 and h[n] = 0 for $n \notin \{0, 1, 2, 3, ..., 9\}$.

$$y[n] = \underbrace{\mathrm{DTFT}^{-1}\big\{X(\Omega)H(\Omega)\big\}}_{(x*h)[n]} \qquad z[n] = \underbrace{\mathrm{DFT}_5^{-1}\big\{X\big(\frac{2\pi}{5}k\big)H\big(\frac{2\pi}{5}k\big)\big\}}_{(x\circledast h)[n]}$$

n	0	1	2	3	4	5	6	7	8	9
y[n]	4	3	7	7	0	A	В	С	D	E
$\overline{z[n]}$	4	3	14	13	1	4	3	14	13	1

Determine appropriate values for the constants A, B, C, D, and E. Give a few choices of x[n] and h[n] that produce y[n].

$$A = 0$$
 $B = 0$ $C = 7$ $D = 6$ $E = 1$

Short-Time Fourier Transforms

Think of short-time Fourier transforms as "moving-window Fourier transforms."

Any Fourier transform can be a short-time Fourier transform.

$$\textbf{Short-Time CTFT:}\ X(\omega,\tau) = \int_{-\infty}^{\infty} x(t) \underbrace{w(t-\tau)}_{\text{window}} e^{-j\omega t} dt$$

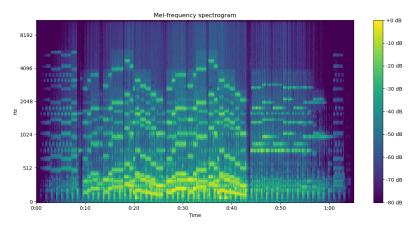
Short-Time DTFT:
$$X(\Omega, m] = \sum_{n = -\infty} x[n] \underbrace{w[n - m]}_{\text{window}} e^{-j\Omega n}$$

Window Functions

$$x_w[n] = x[n]w[n] \iff X_w(\Omega) = \frac{1}{2\pi}(X * W)(\Omega)$$

Spectrograms

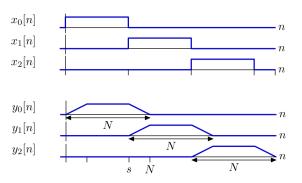
Examine the power of a signal's time-varying spectrum.



(spectrogram of "Les Patineurs" performed on Hammond organ)

Overlap-Add Method

How can we process long signals block-by-block? Divide the input x[n] into blocks — each of length s. Convolve each block with h[n].



The output is $y[n] = y_0[n] + y_1[n] + y_2[n] + \cdots$ Hence *overlap-add*. (Graphic: Denny Freeman)

Fast Fourier Transform (FFT)

Gauss, circa 1805: "...truly, that method greatly reduces the tediousness of mechanical calculations ..."

Radix-2 Decimation-in-Time Algorithm

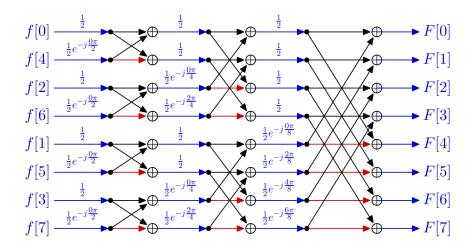
• Split a length-N DFT into a sum of two length-(N/2) DFTs.

$$X_N[k] = \frac{1}{2} \left(X_{N/2}^{\text{even}}[k] + W_N^k X_{N/2}^{\text{odd}}[k] \right)$$

$$W_N = e^{-jrac{2\pi}{N}}$$
 ($N^{ ext{th}}$ root of unity, or "twiddle factor")

- Repeat (\uparrow) until N/2 = 1, when we can't divide by 2 anymore.
- The DFT of a length-1 signal is the signal itself: X[0] = x[0].

FFT: Decimation in Time



(Graphic: Denny Freeman)

Summary

- Fourier transform pairs and properties
- linearity and time-invariance
- difference equations (DT) and differential equations (CT)
- unit-sample response (DT) and impulse response (CT)
- frequency response
- convolution and filtering
- modulation and communications systems
- discrete Fourier transform (DFT)
- window functions
- circular convolution
- short-time Fourier transforms
- fast Fourier transform (FFT)

"Signals and Systems" Subjects

ocessing	
Signal Processing	fall, spring
Signals, Systems, and Inference	spring
Fundamentals of Music Processing	fall
Discrete-Time Signal Processing	fall
Digital Image Processing	spring
Machine Learning for Signal Processing	spring
ubjects	
Circuits and Electronics	fall, spring
Dynamical Systems and Control	fall, spring
Biomedical Imaging with MRI	fall
Computational Imaging	fall
Matrix Methods	spring
Acoustics, Synthesis, and Audio Effects	spring
	Signal Processing Signals, Systems, and Inference Fundamentals of Music Processing Discrete-Time Signal Processing Digital Image Processing Machine Learning for Signal Processing ubjects Circuits and Electronics Dynamical Systems and Control Biomedical Imaging with MRI Computational Imaging Matrix Methods