6.300: Signal Processing

Quiz #2 Review (Lecture)

e Quiz #2 is in Walker (50-340) on Tuesday, 11/04 at 2:00 p.m.
e Bring two 8.5” x 11.0” pages (four sides) of handwritten notes.

November 2025



Calculus Analogy

You wouldn’t want to walk into a calculus quiz without knowing
d sin(6)

ao
by heart, right? Going back to the derivation wastes precious time!

= cos(6)

sin(f + ¢) — sin(6)
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Calculus Analogy

To do well on a calculus quiz,
you probably need to know at least a few things by heart.

common functions and their derivatives

aieny g de) Ly dsin(t)
Tl nt Fra e = cos(t)
differentiation rules
dlef () +eg] __df | dg () _dg df

dt Var dt dt  df dt




Calculus Analogy

To do well on a signal processing quiz,
you probably need to know at least a few things by heart.

common signals and their Fourier transforms

8[n —ng] = e M M = 275((Q — Q) mod 27)

Fourier properties
c1Xx1 [n] + C2X2[Tl] < C1X1(Q) + CZXZ(Q)
x[n —ng| < e MX(Q)
e y[n] —= X(Q — Qo)




Fourier Transforms (CT)

time domain <= frequency domain
it) —= 1
5(t —tg) <= e Wl
1 <= 27d(w)

el — 27 (w — wy)

Duality: Notice the common trend in transform pairs.
x(t) —= X(w)
X(t) —= 2mx(—w)




Fourier Transforms (DT)

All discrete-time Fourier transforms are 27-periodic.

time domain <= frequency domain
dn| <=1
8[n —ng) <= e/
1 <= 276(Q2mod 27)
/" <= 275 ((Q — Q) mod 2r)

Duality: Not so easy with discrete-time Fourier transforms.
x[n] is discrete in time, but X(§2) is continuous in frequency!




Some Fourier Properties

time domain <= frequency domain

c1x1[n] + caxa[n] <= c1X1(Q) + 2 X2(2)
(x1 % x2)[n] <= X1(2)X3(Q)
xinlxon] <= (X1 % X)(Q)
x[—n] <= X(—Q)
x[nM] = X(52)
x[n —ny] <= e MX(Q)
e/ ixn] —= X(Q — Q)
nxn) < j-LX(Q)
Dx(t) = jwX(w)




Linearity and Time-Invariance

Linearity

x1[n] — |linear system | — y [n]
xz[n] — |linear system | — y2[n]

c1x1[n] + cax2[n] — | linear system | — c1y1[n] + cay2[n]

Time-Invariance

x[n] — ‘ time-invariant system ‘ — y[n]

x[n —ng) — ‘ time-invariant system ‘ — y[n — np|




Check Yourself

Are the following systems linear and time-invariant?
(Recall: Together, additivity and homogeneity imply linearity.)

y[n] = 3x[n — 1)+ 3x[n] + x[n + 1

y[n] = M.X'[n] -+ B for constants M and B




Check Yourself

x[n] + 2x[n+1]

Q=

y[n] = 3x[n—1]+

Linear? By inspection, yes!

x[n] = c1x1[n] + cax2[n] — — y[n] = ciya1[n] + cay2[n]

Time-invariant? By inspection, yes!

x[n — no) —>—>y[n—n0]




Check Yourself

y[n] = MX[”] + B forconstants M and B

Linear? If M # 0 and B = 0, yes.

x[n] = c1x1[n] + cax2[n] — — y[n] = ciy1[n] + cay2[n]

Time-invariant? Yes.

x[n — no) —>—>y[n—n0]




Check Yourself

Linear? Yes. Integration is a linear operation.

t ot t
/ C1X1(T) + CzXz(T)dT =1 / X1 (T)dT + Cz/ XQ(T)dT
0 0 0

Time-invariant? No.

t—tp t—tg
y(t—ty) = / dT;é/ Ydr' for 7' =1 — tj




LTI Systems

Three representations for LTI systems:

e difference equation (DT) or differential equation (CT)
e unit-sample response (DT) or impulse response (CT)
e frequency response



LTI Systems

Three representations for LTI systems:

e difference equation (DT) or differential equation (CT)
e unit-sample response (DT) or impulse response (CT)
e frequency response

Difference Equations and Differential Equations
Impose time-domain constraints on the input and output.

y[n] = Sy[n — 1] + x[n]

W x(t) -y




LTI Systems

Three representations for LTI systems:

e difference equation (DT) or differential equation (CT)
e unit-sample response (DT) or impulse response (CT)
e frequency response

xn| —

Unit-Sample Response
Characterize a system by a single time-domain signal.

dn| —

LTI

LTI

— h|n|

— Y h[Kx[n — K
k




Convolution

Convolving x[n] with §[n — ng| time-shifts x[n].

hin] = d[n —ng]| = (xxh)[n| = x[n — ng)

Convolving x[n] with a sum of scaled and time-shifted J sig-
nals produces a sum of scaled and time-shifted x|[n].

_Zh
(x x h)[n] = Zh

scale time- Shlft




Convolution

(x * h)[n] is a superposition of scaled and time-shifted x[n].

(x * h)|n]

=

=h
it
h

nj +
n— 1] +
n— 2]+




Convolution is Commutative

(x * h)[n] is a superposition of scaled and time-shifted h[n].

X
X

(x x h)[n] = xt

—_

| hln] +
[hln —1] +
n— 2]+




Convolution

o] [1] [2] [s] [4f [5] [6] [7]

n

= [o] [1] [2] [s] [4] [5] le] [7]

= 1] 18] le| le] [5] [3] lo] [0

(x x h)[n]




Check Yourself

Consider an LTI system with unit-sample response h[n].

hin] = d[n] + on — 1] + d[n — 2]

Suppose that the input to the system is x[n].

x[n] = cos(%n)

Determine a closed-form expression for the output y[n].



Check Yourself

hin] = d[n] + d[n — 1] + d[n — 2]
yn| = (x«h)[n] = x[n] + x[n — 1) + x[n — 2]

x[n] = cos(¥n) is periodic in N = 3 samples.

x0]=1 x[1]=-1 x2]=-1

x[n] +xn—1]+x[n—2] =0foralln




Check Yourself

Alternatively, think of the frequency response.
H(Q)=1+e /% +e7/*
=/ (e +1+e7?)
= ejgz(l + 2 cos(Q))




LTI Systems

Three representations for LTI systems:
e difference equation (DT) or differential equation (CT)

e unit-sample response (DT) or impulse response (CT)
e frequency response

Frequency Response

Complex exponentials are eigenfunctions of LTI systems!
Characterize a system by how it shapes a signal’s spectrum.

e/ — LTI — H(Q)e/™
X(Q) = [LTI — H(Q)X(Q)




Eigenfunctions (if you're interested)

An eigenvalue-eigenvector pair (A, v) satisfy the eigenequation.

Av = \v

Likewise, eigenvalue-eigenfunction pairs satisfy eigenequations.

d At At n —1yn
—{eMt =M R{N'} =2TTA
dt ——

right shift
Exponential functions e are eigenfunctions of the d/dt operator.

Set A = jw = Eigenfunctions are CTFT basis functions!

Geometric sequences A" are eigenfunctions of the R operator.
Set A = ¢/ = Eigenfunctions are DTFT basis functions!



EigenfunctiOnS (if you're interested)

Let P(A) denote a polynomial in A. P(A) has the same eigenvectors
vk, but the corresponding eigenvalues are P(\).

P(A)v = P(\)v

P(4)eM = P(A)e

P(R)N" = P(AH)A"

Expressing a signal in a basis of eigenfunctions facilitates analysis.

(e.g., The homogeneous solution to a linear differential equation with constant coefficients is a linear combination of
eigenfunctions that lie in the null space of the polynomial differential operator.)



Eigenfunctions (if you're interested)

How do we interpret Ax = b?

e express x = ) ; Cxy in basis spanned by eigenvectors of A
e scale each eigenvector vy by the eigenvalue \;
e b= Zk ck/\kvk

How do we interpret x[n] — —y[n]?

e express x[n] = % Jo.. X(€Q)e/d() in eigenfunction basis
e scale each eigenfunction e/*" by the eigenvalue H({2)
o yln] =5 [, Y()e/dQ = 5L [, H(Q)X(Q)e/dQ




Signals and Systems
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(Graphic: Denny Freeman)
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Signals and Systems

Example: Mass on a Spring

(Graphic: Denny Freeman)



Signals and Systems

Example: Mass on a Spring
e signals: position x(t) and position y(t)
e parameters: mass M and spring constant K

cos(wt) — — |H(w)| cos(wt + ZH(w))

very responsive to sinusoidal oscillations at w ~ wy




Signals and Systems

Example: Series RLC Circuit

R L +

(Graphic: Denny Freeman)



Signals and Systems

Example: Series RLC Circuit
e signals: input voltage v;(f) and output voltage v,(f)
e parameters: resistance R, inductance L, and capacitance C

v, (t) 1 dv,(t
e Sl

Vo(w) wd /1 L
H — = = —_— = —
() Viw)  w+ Ljw —w? 0 IC 'R

C

(Ui(t) — RC

cos(wt) — — [H(w)| cos(wt + ZH (w))

damped harmonic oscillator




Signals and Systems

Example: Phosphorylation Cycle

Z 1 C T T T il
Input ’ E
/\ 5 0.5 h
X X* ] 0 C 1 1 1 N
‘\\._,/// or
?
Y S 45t .
Q
é
Output A
90 & 1 L I

-6 -5 -4 3 2
10 10 10 10 10
Frequency w (rad/s)

(Biomolecular Feedback Systems, D. Del Vecchio and R. M. Murray)



Signals and Systems

Example: Phosphorylation Cycle
e signals: kinase x(t) and phosphorylated substrate y/(f)
e parameters: production rate 5 and decay rate

_Yw) _ B
H(w) = X(w) y+jw
‘H(w)\ = \/% /H(w) = —tan™! <°;’>

low-pass filter: unresponsive to rapidly-varying stimuli




Check Yourself

Difference Equation — Unit-Sample Response

Determine the unit-sample response h[n] for the following linear
constant-coefficient difference equation. Assume that the system is
initially at rest: For n < 0, x[n] = y[n] = 0.

y[n] = Jy[n — 1] + x[n]




Check Yourself

We could set x[n] = d[n] and notice that the response y[n] =
h[n] is a decaying geometric sequence. Alternatively, we could
determine the frequency response H(f)) by computing the
DTFT of the difference equation. The unit-sample response
h[n] is the inverse DTFT of the frequency response H(2).

Y 1
X(Q) 1-le

Y(Q) = e 7Y (Q) + X(Q) <= H(Q) =

jn
! | H(©)e Jomgo = 40 = (})"uln]

h _er 1
= o 21 Jyr 1 Le @ 2




Check Yourself

Frequency Response — Differential Equation

Determine a linear ordinary differential equation with constant
coefficients with frequency response H(w).

1—jw

Hw) =125




Check Yourself

Multiplication by jw in the frequency domain corre-
sponds to differentiation with respect to t in the time
domain.

- Y(w) 1—jw
HW) = X0 ~ T a(u?
y()+a YD gy B




LTI Systems

Three representations for LTI systems:

e difference equation (DT) or differential equation (CT)
e unit-sample response (DT) or impulse response (CT)
e frequency response



Communications Systems

Amplitude Modulation
x(t) = [AM] = y(t) = x(¢) cos(wt)

Is an amplitude modulator a linear system?
Is an amplitude modulator a time-invariant system?



Communications Systems

Amplitude Modulation
x(t) = [AM] = y(t) = x(¢) cos(wt)

Is an amplitude modulator a linear system?
Is an amplitude modulator a time-invariant system?

Linear? Yes.

(c1x1 () + coxa(t)) cos(wet) = c1x1(F) cos(wet) + caxa(F) cos(wet)

Time-invariant? No! The carrier cos(wct) is time-varying.
The system generates new non-zero frequencies in the output!




Communications Systems

Amplitude Modulation

Transmission: Multiply x(f) by sinusoidal carrier signal c(t)
(modulation) and transmit the modulated signal y(t) = x(t)c(t).

Reception: Recover x(t) from the amplitude-modulated signal y(f)
through demodulation and low-pass filtering.

c(t) = cos(wet) = e/ + Le /v
y(t) =x(t)c(t) —= Y(w) = %(X % C) (w)
Y(w) = 3X(w — wo) + 3 X (w+w)

copies of X(w) shifted outward by w




More Modulation

We examined amplitude modulation in class. Perhaps you've
heard of frequency modulation (FM) or phase modulation (PM)
— but you don’t need to know these for the quiz, per se.

Sinusoidal Modulation
y(t) = A cos(wt + ¢)

e amplitude (AM) time-varying amplitude A = A(t)
o frequency (FM) time-varying frequency w = w(t)
e phase (PM) time-varying phase ¢ = ¢(t)




DT Fourier Representations

The DTES is for periodic signals. No real-world periodic signals!
e finite summation over n (infinite-length periodic signals)
e frequency variable k of discrete domain

The DTFT may only be computed in theory.
e infinite summation over 7 (infinite-length aperiodic signals)
e frequency variable 2 of continuous domain

The DFT can be computed in practice.
e finite summation over n (finite-length aperiodic signals)
e frequency variable k of discrete domain

The FFT refers to a family of algorithms for computing the DFT.

The STFT is a “moving-window Fourier transform.”
e For practical computation, use the DFT.



Discrete Fourier Transform

The DFT is a discrete-time, discrete-frequency Fourier transform.

e finite-length signals
e discrete in time (1)
e discrete in frequency (k)

Xo[n] = x[njw(n]
N time-samples
N frequency-samples

Discrete Fourier Transform

N— 2
< Je k3
=N Z v

n=

1

X]

analysis

synthesis




Discrete Fourier Transform

DFT vs. Discrete-Time Fourier Series (DTFS)

The length-N DFT is equivalent to the discrete-time Fourier series
of an N-periodic extension of windowed signal x;,[n] = x[n]w|n].

N-1
X[k] = I%I Z Xo[n mod Nje /5"
n=0

DFT vs. Discrete-Time Fourier Transform (DTFT)

X[k] = +Xw(5k)

DFT frequency resolution: % hertz or ZWW radians




Relation Between DFT and DTFT
Graphical depiction of relation between DFT and DTFT.

X ()

DFT
—_—
_N 0 N
2 2
A
i sample: Q — %
window scale: 1/N
Xu(Q)

e DTFT J\/W&/L

an v...."... .' ...'. Q - I Q

0 7T

0 N-1
While sampling and scaling are important, it is the windowing that most
affects frequency content.

(Graphic: Denny Freeman)



Window Functions

Multiplying x[n] by the window function w[n] corresponds to
convolving the DTFT of x[n] with the DTFT of w[n].

Windowing
xo[n] = x[nlwn] <= Xu(Q) = = (X * W)(Q)

[y
long w(n] <= narrow W(Q)

There are many window functions.

SciPy: Bartlett, Bartlett-Hann, Blackman, Blackman-Harris,
Bohman, box-car, cosine, discrete prolate spheroidal sequences,
Dolph-Chebyshev, exponential, flat-top, Gaussian, generalized
Hamming, Hamming, Hann, Kaiser, Kaiser-Bessel, Lanczos,
Nutall, Parzen, Taylor, triangular, Tukey, ...



Window Functions

rectangular window Bartlett window Hann window
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The window to use depends on the task at hand.
e What’s most important? Narrow mainlobe? Low sidelobes?



Window Functions

rectangular window

Hann window
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DFT: Circular Convolution

Multiplication of N-point DFTs in the frequency domain
corresponds to circular convolution in the time domain.

(x ® h)[n] = N DFT {Xn/[k|Hn[k]}
N-1
= x[mlh [(n —m) modN]

m=0

Circular convolution seems complicated, but it is really simple.
You do need to know how to do regular convolution, though.

Circular Convolution

e Compute the regular (non-circular) convolution.
e Wrap the result into a length-N interval.

o Periodically extend this length-N interval.




Circular Convolution

o] [1] [2] [s] [4f [5] [6] [7]

o] [1] [2] [3] [4] [5] [6] [7]




Check Yourself

Suppose that x[n] = 0 and h[n| =0 forn ¢ {0,1,2,3,...,9}.

yln] = DTFT ' {X(Q)H(©)}  zln] = DFT; {X(ZK)H (%K)}

(xxh)[n] (x®h)[n)

n o] [1] [2] [3] [4] [5] [e] [7] [8] [9]
yn] 4 3 7 7 0 A B C D E
4 3 14 13 1 4 3 14 13 1

Determine appropriate values for the constants A, B, C, D, and E.
Give a few choices of x[n] and h[n] that produce y[n].



Check Yourself

Suppose that x[n] = 0 and h[n| =0 forn ¢ {0,1,2,3,...,9}.

yln] = DTFT ' {X(Q)H(©)}  zln] = DFT; {X(ZK)H (%K)}

(ex )] (x @ h)[n]

n o] [1] [2] [3] [4] [5] [e] [7] [8] [9]
yn] 4 3 7 7 0 A B C D E
4 3 14 13 1 4 3 14 13 1

Determine appropriate values for the constants A, B, C, D, and E.
Give a few choices of x[n] and h[n] that produce y[n].




Short-Time Fourier Transforms

Think of short-time Fourier transforms as “moving-window
Fourier transforms.”

Any Fourier transform can be a short-time Fourier transform.

Short-Time CTFT: X(w,7) = / x(H)w(t —7)e ™dt
—0o0 ~—
window
Short-Time DTFT: X(Q,m] = Z x[n]w[n — m) e 7"
n=—oo
window

Window Functions

xo[n] = x[nlwn] <= Xu(Q) = = (X * W)(Q)

™




Spectrograms

Examine the power of a signal’s time-varying spectrum.

Mel-frequency spectrogram

+0d8
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-10d8B.
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2 -40d8
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' 60 dB.
512 N sk
i T ods
) v 1] b |
o | it [ ] |
-80dB.

[
0:00

(spectrogram of “Les Patineurs” performed on Hammond organ)



Overlap-Add Method

How can we process long signals block-by-block? Divide the input
x[n] into blocks — each of length s. Convolve each block with h[n].

O e—

riln] — .

L B~ T

yoln] n

nln] N "

pelr] ! T T T al n
s N N

The output is y[n] = yo[n] + y1[n] + y2[n] + - - - Hence overlap-add.
(Graphic: Denny Freeman)



Fast Fourier Transform (FFT)

Gauss, circa 1805: “...truly, that method greatly reduces the
tediousness of mechanical calculations ...”

Radix-2 Decimation-in-Time Algorithm
e Split a length-N DFT into a sum of two length-(N/2) DFTs.

Xk = 3 (XS] + WEXRSIK)

2T
Wy = e /N (N™ root of unity, or “twiddle factor”)

e Repeat (1) until N/2 = 1, when we can’t divide by 2 anymore.
e The DFT of a length-1 signal is the signal itself: X[0] = x[0].



FFT: Decimation in Time

(Graphic: Denny Freeman)



Summary

e Fourier transform pairs and properties

e linearity and time-invariance

o difference equations (DT) and differential equations (CT)
e unit-sample response (DT) and impulse response (CT)
frequency response

convolution and filtering

modulation and communications systems

discrete Fourier transform (DFT)

window functions

circular convolution

short-time Fourier transforms

fast Fourier transform (FFT)



“Signals and Systems” Subjects

Signal Processing

6.300
6.301
6.302
6.700
6.701
6.5955

Signal Processing

Signals, Systems, and Inference
Fundamentals of Music Processing
Discrete-Time Signal Processing

Digital Image Processing

Machine Learning for Signal Processing

Related Subjects

6.200
6.310
6.480
6.C27
18.065
21M.569

Circuits and Electronics

Dynamical Systems and Control
Biomedical Imaging with MRI
Computational Imaging

Matrix Methods

Acoustics, Synthesis, and Audio Effects

fall, spring
spring

fall

fall

spring
spring

fall, spring
fall, spring
fall

fall

spring
spring



