6.300: Signal Processing (Fall 2025)

Handout: Quiz #1 Story Sheet

Author: Titus K. Roesler (tkr@mit.edu)

The Signal-Processing Story So Far

• 09/04: Signal Processing

• **09/09:** Fourier Series (Sinusoids)

• **09/11:** Fourier Series (Exponentials)

• **09/16:** Sampling and Aliasing

• **09/18:** Discrete-Time Fourier Series

• **09/23:** Continuous-Time Fourier Transform

• **09/25**: Discrete-Time Fourier Transform

identifying, analyzing, manipulating signals series representation for periodic CT signals series representation for periodic CT signals discretization: from continuous time to discrete time series representation for periodic DT signals

frequency representation for aperiodic CT signals

frequency representation for aperiodic DT signals

Mathematics Review

Dimensional Analysis

 T_0 (seconds) $\times f_s$ (samples / second) = N_0 (samples)

 ω_0 (radians / second) $\div f_s$ (samples / second) = Ω_0 (radians / sample)

CT cyclical frequency $f_0 = 1/T_0$

CT angular frequency $\omega_0 = 2\pi/T_0 = 2\pi f_0$

DT angular frequency $\Omega_0 = \omega_0/f_s = 2\pi f_0/f_s = 2\pi f_0 T_s = 2\pi/N_0$

cycles per second or hertz (Hz)

radians per second

radians per sample

Geometric Series

$$\sum_{n=0}^{N-1} z^n = \frac{1 - z^N}{1 - z}$$

$$\sum_{n=0}^{N-1} z^n = \frac{1-z^N}{1-z} \qquad \sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \text{ for } |z| < 1$$

Binomial Theorem

$$(\alpha + \beta)^n = \binom{n}{0}\alpha^n + \binom{n}{1}\alpha^{n-1}\beta + \binom{n}{2}\alpha^{n-2}\beta^2 + \dots + \binom{n}{n-1}\alpha\beta^{n-1} + \binom{n}{n}\beta^n$$
$$\binom{n}{k} \equiv \frac{n!}{k!(n-k)!} \text{ where } n! \equiv (n)(n-1)(n-2)\cdots(3)(2)(1)$$

Write down any other formulas you think are especially important to remember.

Continuous-Time Fourier Series

Continuous-Time Fourier Series

f(t) = f(t+T) is a T-periodic function, and $\omega_0 = 2\pi/T$ denotes the fundamental angular frequency.

Continuous-Time Fourier Series in Trigonometric Form

$$f(t) = c_0 + \sum_{k=1}^{\infty} c_k \cos(k\omega_0 t) + \sum_{k=1}^{\infty} d_k \sin(k\omega_0 t)$$

where
$$c_0 = \frac{1}{T} \int_T f(t) dt$$
 and $c_k = \frac{2}{T} \int_T f(t) \cos(k\omega_0 t) dt$ and $d_k = \frac{2}{T} \int_T f(t) \sin(k\omega_0 t) dt$

 c_0 , the "direct current" (DC) term, represents the average value of f(t) over a single period.

Continuous-Time Fourier Series in Complex Exponential Form

$$f(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \text{ where } a_k = \frac{1}{T} \int_T f(t) e^{-jk\omega_0 t} dt \qquad \quad \left(\text{e.g., } a_0 = \frac{1}{T} \int_T f(t) dt\right)$$

Frequency

Time and frequency are inversely proportional.

cyclical:
$$f_0 = \frac{1}{T}$$
 (cycles per second, or hertz) angular: $\omega_0 = 2\pi f_0 = \frac{2\pi}{T}$ (radians per second)

Complex Variables

Think of complex variables geometrically — as points in the complex plane.

$$z = \underbrace{\operatorname{Re}\{z\} + j\operatorname{Im}\{z\}}_{\text{rectangular}} = \underbrace{re^{j\phi}}_{\text{polar}} \text{ where } \underbrace{r = \sqrt{\operatorname{Re}\{z\}^2 + \operatorname{Im}\{z\}^2}}_{\text{magnitude of } z} \text{ and } \underbrace{\tan(\phi) = \frac{\operatorname{Im}\{z\}}{\operatorname{Re}\{z\}}}_{\text{angle or phase of } z}$$

Euler's Formula

Euler's formula relates the rectangular-coordinate and polar-coordinate descriptions of complex variables.

$$e^{j\theta} = \cos(\theta) + j\sin(\theta) \qquad \cos(\theta) = \operatorname{Re}\{e^{j\theta}\} = \frac{e^{j\theta} + e^{-j\theta}}{2} \qquad \sin(\theta) = \operatorname{Im}\{e^{j\theta}\} = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Sampling and Aliasing

From Continuous to Discrete

We refer to the process of discretizing time or space as sampling.

 $x[n] = x(n\Delta)$ where $n \in \mathbb{Z}$ and Δ denotes the sampling period, sampling interval, or time step

We refer to the process of discretizing amplitude as quantization. (e.g., rounding)

$$\hat{x}[n] = Q\{x[n]\}$$
 where $Q\{\cdot\}$ denotes a quantization operator

e.g.,
$$Q_{\Delta}\{x[n]\} = \Delta \left\lfloor \frac{x[n]}{\Delta} + \frac{1}{2} \right\rfloor$$
 for some constant $\Delta > 0$, where $\lfloor \cdot \rfloor$ denotes the floor function

Digital signals are discrete in both time and amplitude. Digital systems such as laptops process digital signals. Discrete-time signals are discrete in time — but not necessarily in amplitude. In 6.300, we won't study quantization in great depth. We'll focus on discrete-time signal processing.

Sampling and Aliasing

We sample a continuous-time signal x(t) every Δ seconds to obtain a discrete-time signal x[n].

$$x[n] = x(n\Delta)$$
 where $n \in \mathbb{Z}$ and Δ denotes the sampling period, sampling interval, or time step

Note that x[n] is a function of the integer n, which is enclosed in square brackets. In contrast, x(t) is a function of the real variable t, which is enclosed in parentheses. With this notation, $x[n] \neq x(n)$ in general — when you write x(n), you're implicitly saying that $\Delta = 1$.

Aliasing

Sampling involves throwing away information. If we don't sample frequently enough, the information within our signal will be distorted: Frequencies will "fold in" on each other.

Nyquist-Shannon sampling theorem: Let f_{max} denote the highest frequency in x(t). The minimum sampling rate that prevents aliasing is $2f_{\text{max}}$ — twice the highest frequency in x(t).

Frequencies

Always keep the dimensions of quantities in mind.

CT cyclical:
$$f=rac{1}{T}$$
 CT angular: $\omega=2\pi f=rac{2\pi}{T}$ DT angular: $\Omega=rac{2\pi f}{f_s}=rac{\omega}{f_s}=rac{2\pi}{N}$

The argument to a trigonometric or exponential function must be expressed in radians.

- units $\{2\pi ft\}$ = (radians/cycle) × (cycles/second) × (seconds) = radians
- units $\{\omega t\}$ = (radians/second) × (seconds) = radians
- units $\{\Omega n\}$ = (radians/sample) × (samples) = radians

Discrete-Time Fourier Series

Fourier Series Formulæ

Continuous-Time Fourier Series (CTFS)

f(t) is a T-periodic function with fundamental angular frequency $\omega_0 = 2\pi/T$.

Synthesis:
$$f(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
 Analysis: $a_k = \frac{1}{T} \int_T f(t) e^{-jk\omega_0 t}$

Analysis:
$$a_k = \frac{1}{T} \int_T f(t) e^{-jk\omega_0 t}$$

Discrete-Time Fourier Series (DTFS)

f[n] is an N-periodic sequence with fundamental angular frequency $\Omega_0=2\pi/N$.

Synthesis:
$$f[n] = \sum_{k=\langle N \rangle} a_k e^{jk\Omega_0 n}$$

Analysis:
$$a_k = rac{1}{N} \sum_{n = \langle N
angle} f[n] e^{-jk\Omega_0 n}$$

A Few Properties of Fourier Series

Here are a few properties of Fourier series that we'll use often in this class. We'll learn more over time.

Linearity

$$f_1(t) \iff F_1[k]$$

$$f_2(t) \iff F_2[k]$$

$$f_1(t) \iff F_1[k]$$
 $f_2(t) \iff F_2[k]$ $f(t) = \alpha f_1(t) + \beta f_2(t) \iff F[k] = \alpha F_1[k] + \beta F_2[k]$

$$f_1[n] \iff F_1[k]$$

$$f_2[n] \iff F_2[k]$$

$$f_1[n] \iff F_1[k] \qquad f_2[n] \iff F_2[k] \qquad f[n] = \alpha f_1[n] + \beta f_2[n] \iff F[k] = \alpha F_1[k] + \beta F_2[k]$$

Time Shift

$$f(t) \iff F[k]$$

$$f(t-t_0) \iff F[k]e^{-jk\omega_0t_0} = |F[k]|e^{j(\angle F[k]-k\omega_0t_0)}$$

$$f[n] \iff F[k]$$

$$f(t) \iff F[k] \qquad f(t-t_0) \iff F[k]e^{-jk\omega_0t_0} = |F[k]|e^{j(\angle F[k]-k\omega_0t_0)}$$

$$f[n] \iff F[k] \qquad f[n-n_0] \iff F[k]e^{-jk\Omega_0n_0} = |F[k]|e^{j(\angle F[k]-k\Omega_0n_0)}$$

Time Flip

$$f(t) \iff F[k]$$

$$f(t) \iff F[k] \qquad f(-t) \iff F[-k]$$

$$f[n] \iff F[k]$$

$$f[n] \iff F[k] \qquad f[-n] \iff F[-k]$$

Conjugate Symmetry (Hermitian Symmetry)

Real-valued signals have conjugate-symmetric Fourier series coefficients.

real-valued $f(t) \iff F[k]$ such that $F^*[k] = F[-k]$ where * denotes complex conjugation

real-valued $f[n] \iff F[k]$ such that $F^*[k] = F[-k]$ where * denotes complex conjugation

Continuous-Time Fourier Transform

Continuous-Time Fourier Transform (CTFT)

The continuous-time Fourier transform may be conceptualized as the continuum limit of a continuous-time Fourier series. Infinitely-many discrete harmonics $k\omega_0$ cluster infinitely-close together to form a continuous frequency spectrum: $k\omega_0$ (function of integer k) $\mapsto \omega$ (function of real-valued ω).

Synthesis:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
 Analysis: $X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$

Analysis:
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Fourier Transform Pairs

$$\delta(t) \iff 1 \text{ (for all } \omega)$$

1 (for all
$$t$$
) $\iff 2\pi\delta(\omega)$

$$\delta(t-t_0) \iff e^{-j\omega t_0}$$

$$e^{j\omega_0 t} \iff 2\pi\delta(\omega - \omega_0)$$

Fourier Transform Properties

You fill this in! Many properties that we've seen in the context of Fourier series still hold true.

Fourier Series vs. Fourier Transform for Periodic Signals

Series:
$$f(t) \iff F[k]$$

Transform:
$$f(t) \iff \sum_{k} 2\pi F[k] \delta(\omega - k\omega_0)$$
 impulses at harmonics

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform (DTFT)

The discrete-time Fourier transform is the discrete-time analogue of the continuous-time Fourier transform — a Fourier transform for discrete-time signals. Infinitely-many discrete harmonics $k\Omega_0$ cluster infinitelyclose together to form a continuous frequency spectrum: $k\Omega_0 \mapsto \Omega$.

Synthesis:
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$$
 Analysis: $X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$

Analysis:
$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

Discrete-Time Fourier Transform Pairs

$$\delta[n] \iff 1 \text{ (for all }\Omega)$$

1 (for all
$$n$$
) $\iff 2\pi\delta(\Omega \mod 2\pi)$

$$\delta[n-n_0] \iff e^{-j\Omega n_0}$$

$$\delta[n-n_0] \iff e^{-j\Omega n_0} \qquad \qquad e^{j\Omega_0 n} \iff 2\pi\delta(\Omega-\Omega_0 \bmod 2\pi)$$

Discrete-Time Fourier Transform Properties

You fill this in! Many properties that we've seen in the context of Fourier series still hold true.

Fourier Series vs. Fourier Transform for Periodic Signals

Series:
$$f[n] \iff F[k]$$

Transform:
$$f[n] \iff \sum_{k} \underbrace{2\pi F[k]\delta(\Omega - k\Omega_0)}_{\text{impulses at harmonics}}$$