
6.300: Signal Processing (Fall 2025)
Handout: Quiz #1 Story Sheet
Author: Titus K. Roesler (tkr@mit.edu)

The Signal-Processing Story So Far
• 09/04: Signal Processing identifying, analyzing, manipulating signals
• 09/09: Fourier Series (Sinusoids) series representation for periodic CT signals
• 09/11: Fourier Series (Exponentials) series representation for periodic CT signals
• 09/16: Sampling and Aliasing discretization: from continuous time to discrete time
• 09/18: Discrete-Time Fourier Series series representation for periodic DT signals
• 09/23: Continuous-Time Fourier Transform frequency representation for aperiodic CT signals
• 09/25: Discrete-Time Fourier Transform frequency representation for aperiodic DT signals

Mathematics Review
Dimensional Analysis

T0 (seconds)× fs (samples / second) = N0 (samples)

ω0 (radians / second)÷ fs (samples / second) = Ω0 (radians / sample)

CT cyclical frequency f0 = 1/T0 cycles per second or hertz (Hz)
CT angular frequency ω0 = 2π/T0 = 2πf0 radians per second
DT angular frequency Ω0 = ω0/fs = 2πf0/fs = 2πf0Ts = 2π/N0 radians per sample
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Write down any other formulas you think are especially important to remember.



Continuous-Time Fourier Series
Continuous-Time Fourier Series
f(t) = f(t+ T ) is a T -periodic function, and ω0 = 2π/T denotes the fundamental angular frequency.

Continuous-Time Fourier Series in Trigonometric Form

f(t) = c0 +
∞∑
k=1

ck cos(kω0t) +
∞∑
k=1

dk sin(kω0t)

where c0 =
1
T

ˆ
T
f(t) dt and ck = 2

T

ˆ
T
f(t) cos(kω0t) dt and dk = 2

T

ˆ
T
f(t) sin(kω0t) dt

c0, the “direct current” (DC) term, represents the average value of f(t) over a single period.

Continuous-Time Fourier Series in Complex Exponential Form

f(t) =
∞∑

k=−∞
ake

jkω0t where ak = 1
T

ˆ
T
f(t)e−jkω0tdt

(
e.g., a0 =

1
T

ˆ
T
f(t)dt

)

Frequency
Time and frequency are inversely proportional.

cyclical: f0 =
1
T

(cycles per second, or hertz) angular: ω0 = 2πf0 =
2π
T

(radians per second)

Complex Variables
Think of complex variables geometrically — as points in the complex plane.

z = Re{z}+ j Im{z}︸ ︷︷ ︸
rectangular

= re jφ︸ ︷︷ ︸
polar

where r =
√
Re{z}2 + Im{z}2︸ ︷︷ ︸
magnitude of z

and tan(φ) = Im{z}
Re{z}︸ ︷︷ ︸

angle or phase of z

Euler’s Formula

Euler’s formula relates the rectangular-coordinate and polar-coordinate descriptions of complex variables.

e jθ = cos(θ) + j sin(θ) cos(θ) = Re{e jθ} = e jθ + e−jθ

2 sin(θ) = Im{e jθ} = e jθ − e−jθ

2j



Sampling and Aliasing
From Continuous to Discrete
We refer to the process of discretizing time or space as sampling.

x[n] = x(n∆) where n ∈ Z and ∆ denotes the sampling period, sampling interval, or time step

We refer to the process of discretizing amplitude as quantization. (e.g., rounding)

x̂[n] = Q{x[n]} where Q{·} denotes a quantization operator

e.g., Q∆{x[n]} = ∆
⌊
x[n]
∆ + 1

2

⌋
for some constant ∆ > 0, where ⌊·⌋ denotes the floor function

Digital signals are discrete in both time and amplitude. Digital systems such as laptops process digital
signals. Discrete-time signals are discrete in time — but not necessarily in amplitude. In 6.300, we won’t
study quantization in great depth. We’ll focus on discrete-time signal processing.

Sampling and Aliasing
We sample a continuous-time signal x(t) every ∆ seconds to obtain a discrete-time signal x[n].

x[n] = x(n∆) where n ∈ Z and ∆ denotes the sampling period, sampling interval, or time step

Note that x[n] is a function of the integer n, which is enclosed in square brackets. In contrast, x(t) is a
function of the real variable t, which is enclosed in parentheses. With this notation, x[n] ̸= x(n) in general
— when you write x(n), you’re implicitly saying that ∆ = 1.

Aliasing

Sampling involves throwing away information. If we don’t sample frequently enough, the information within
our signal will be distorted: Frequencies will “fold in” on each other.

Nyquist-Shannon sampling theorem: Let fmax denote the highest frequency in x(t). The mini-
mum sampling rate that prevents aliasing is 2fmax — twice the highest frequency in x(t).

Frequencies
Always keep the dimensions of quantities in mind.

CT cyclical: f = 1
T

CT angular: ω = 2πf = 2π
T

DT angular: Ω = 2πf
fs

= ω

fs
= 2π

N

The argument to a trigonometric or exponential function must be expressed in radians.
• units{2πft} = (radians/cycle)× (cycles/second)× (seconds) = radians
• units{ωt} = (radians/second)× (seconds) = radians
• units{Ωn} = (radians/sample)× (samples) = radians



Discrete-Time Fourier Series
Fourier Series Formulæ

Continuous-Time Fourier Series (CTFS)

f(t) is a T -periodic function with fundamental angular frequency ω0 = 2π/T .

Synthesis: f(t) =
∞∑

k=−∞
ake

jkω0t Analysis: ak = 1
T

ˆ
T
f(t)e−jkω0t

Discrete-Time Fourier Series (DTFS)

f [n] is an N -periodic sequence with fundamental angular frequency Ω0 = 2π/N .

Synthesis: f [n] =
∑

k=⟨N⟩
ake

jkΩ0n Analysis: ak = 1
N

∑
n=⟨N⟩

f [n]e−jkΩ0n

A Few Properties of Fourier Series
Here are a few properties of Fourier series that we’ll use often in this class. We’ll learn more over time.

Linearity

f1(t) ⇐⇒ F1[k] f2(t) ⇐⇒ F2[k] f(t) = αf1(t) + βf2(t) ⇐⇒ F [k] = αF1[k] + βF2[k]

f1[n] ⇐⇒ F1[k] f2[n] ⇐⇒ F2[k] f [n] = αf1[n] + βf2[n] ⇐⇒ F [k] = αF1[k] + βF2[k]

Time Shift

f(t) ⇐⇒ F [k] f(t− t0) ⇐⇒ F [k]e−jkω0t0 = |F [k]|e j(∠F [k]−kω0t0)

f [n] ⇐⇒ F [k] f [n− n0] ⇐⇒ F [k]e−jkΩ0n0 = |F [k]|e j(∠F [k]−kΩ0n0)

Time Flip

f(t) ⇐⇒ F [k] f(−t) ⇐⇒ F [−k]

f [n] ⇐⇒ F [k] f [−n] ⇐⇒ F [−k]

Conjugate Symmetry (Hermitian Symmetry)

Real-valued signals have conjugate-symmetric Fourier series coefficients.

real-valued f(t) ⇐⇒ F [k] such that F ∗[k] = F [−k] where ∗ denotes complex conjugation

real-valued f [n] ⇐⇒ F [k] such that F ∗[k] = F [−k] where ∗ denotes complex conjugation



Continuous-Time Fourier Transform
Continuous-Time Fourier Transform (CTFT)
The continuous-time Fourier transform may be conceptualized as the continuum limit of a continuous-time
Fourier series. Infinitely-many discrete harmonics kω0 cluster infinitely-close together to form a continuous
frequency spectrum: kω0 (function of integer k) 7→ ω (function of real-valued ω).

Synthesis: x(t) = 1
2π

ˆ ∞

−∞
X(ω)e jωtdω Analysis: X(ω) =

ˆ ∞

−∞
x(t)e−jωtdt

Fourier Transform Pairs
δ(t) ⇐⇒ 1 (for all ω) 1 (for all t) ⇐⇒ 2πδ(ω)

δ(t− t0) ⇐⇒ e−jωt0 e jω0t ⇐⇒ 2πδ(ω − ω0)

Fourier Transform Properties
You fill this in! Many properties that we’ve seen in the context of Fourier series still hold true.

Fourier Series vs. Fourier Transform for Periodic Signals
Series: f(t) ⇐⇒ F [k] Transform: f(t) ⇐⇒

∑
k

2πF [k]δ(ω − kω0)︸ ︷︷ ︸
impulses at harmonics



Discrete-Time Fourier Transform
Discrete-Time Fourier Transform (DTFT)
The discrete-time Fourier transform is the discrete-time analogue of the continuous-time Fourier transform
— a Fourier transform for discrete-time signals. Infinitely-many discrete harmonics kΩ0 cluster infinitely-
close together to form a continuous frequency spectrum: kΩ0 7→ Ω.

Synthesis: x[n] = 1
2π

ˆ
2π

X(Ω)e jΩndΩ Analysis: X(Ω) =
∞∑

n=−∞
x[n]e−jΩn

Discrete-Time Fourier Transform Pairs
δ[n] ⇐⇒ 1 (for all Ω) 1 (for all n) ⇐⇒ 2πδ(Ωmod 2π)

δ[n− n0] ⇐⇒ e−jΩn0 e jΩ0n ⇐⇒ 2πδ(Ω− Ω0mod2π)

Discrete-Time Fourier Transform Properties
You fill this in! Many properties that we’ve seen in the context of Fourier series still hold true.

Fourier Series vs. Fourier Transform for Periodic Signals
Series: f [n] ⇐⇒ F [k] Transform: f [n] ⇐⇒

∑
k

2πF [k]δ(Ω− kΩ0)︸ ︷︷ ︸
impulses at harmonics


