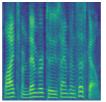
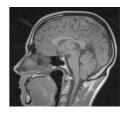
6.3000: Signal Processing

Wrap Up

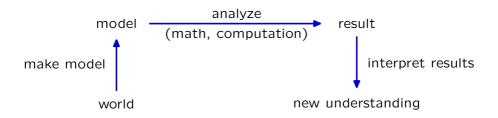
- 6.3000 Retrospective
- What Comes After 6.3000?
- Tell Us How To Improve 6.3000


6.3000: Signal Processing – Content Retrospective


Signals are functions that contain and convey information.

Examples:

- the MP3 representation of a sound
- the JPEG representation of a picture
- an MRI image of a brain


Signal Processing develops the use of signals as abstractions:

- **identifying** signals in physical, mathematical, computation contexts,
- analyzing signals to understand the information they contain, and
- manipulating signals to modify or emphasize information.

6.3000: Signal Processing – Content Retrospective

Our approach is the same as that in many technical disciplines.

- model some aspect of the world,
- analyze the model, and
- interpret results to gain a new or better understanding.

We tried to include examples of all three of these steps:

- develop math/computation skills to analyze signal processing problems
- recognize real-world applications and apply skills to solve them

Brief Summary of 6.3000 Content

Technical Topics	Applications	Labs
Fourier Series and Transforms	Musical Instruments	\$5
Sampling and Aliasing	Speech (and Singing)	Synthesizing Music
Linearity and Time-Invariance	Communications/Modulation	Echo Removal
Convolution and Freq Response	Deconvolution/Deblurring	Separating Harmonies
DFT and FFT	JPEG and DCT	Identifying Chords
Short-Time Fourier Transforms	MRI	MIT Logo
2D Transforms	Fourier Optics	

What Might Come Next?

- 6.3010 (6.011) Signals, Systems, and Inference (Zheng, Hagelstein)
- 6.3100 (6.302) Dynamic System Modeling and Control Design (White, Liu, Monardo)
 - 6.C27 (6.S045) Comp Imaging: Physics and Algorithms (George Barthasthis, Rajeev Ram, Sixian You)
 - **6.2060** (6.115) Microcomputer Project Laboratory (Leeb)

6.3020 (6.187) Fundamentals of Music Processing (Egozy)

- 6.2300 (6.013) Electromagnetics, Waves, and Applications (Daniel, Assouly)
- 6.2370 (6.161) Modern Optics Project Laboratory (Warde)
- 6.4800 Biomedical Imaging with MRI (Adalsteinsson, Heldt, Lewis, Stulz, White)
- 6.4810 (6.021) Cellular Neurophysiology and Computing (Heldt)
- **6.4812** Cellular Neurophysiology and Computing (Heldt, Han)
- 6.5931 (6.812) Hardware Architecture for Deep Learning (Sze)
- **6.6300** (6.630) Electromagnetics (Hu)
- **6.6370** (6.637) Optical Imaging Devices and Systems (Warde)
- **6.7000** (6.341) Discrete-time Signal Processing (Ward)
- 6.7010 (6.344) Digital Image Processing (Rachlin, Lim)
- **6.7411** (6.450) Principles of Digital Communication (Chan)
- **6.8300** (6.819) Advances in Computer Vision (Sitzmann)
- **6.8371** (6.815) Digital and Computational Photography (Durand)
- 6.8620 [6.345] Spoken Language Processing (Glass)
- **6.8801** (6.026) Biomedical Signal and Image Processing (Alam)
- 6.8810 (6.556) Data Acquisition/Image Reconstruction in MRI (Adelsteinsson)
- 18.103 Fourier Analysis
- 18.104 Seminar in Analysis (CI-M)
- 18.085 Computational Science and Engineering I

Please Tell Us How To Improve 6.3000

We want to present course material in a way that encourages a deep technical understanding while also being fun and engaging.

We need your help and your feedback in order to make that happen.

Please use the next **15 minutes** to fill out the Registrar's Subject Evaluation and the 6.3000 End-of-Semester Survey.

- Fill out the MIT Subject Evaluation: http://registrar.mit.edu/subjectevaluation
- Provide specific feedback on 6.3000: go to "Survey" tab on 6.3000 website

Remember to Submit your responses

After you have finished, we will have an open discussion.