
6.300 Signal Processing
Week 8, Lecture B:

Fast Fourier Transform

• Computation cost

• Recursive

Quiz 2: Tuesday November 4, 2-4pm 50-340 
• Closed book except for two pages of written notes (8.5’’ x 11’’ both sides)
• No electronic devices (No headphones, cell phones, calculators, …)
• Coverage up to Week #8 (DFT and FFT); no HW9, a practice quiz will be put on our website.



Fast Fourier Transform
The Fast-Fourier Transform (FFT) is an algorithm (actually a family of 
algorithms) for computing the Discrete Fourier Transform (DFT).

It's also interesting from an historical perspective.



Historical Perspective



Historical Perspective



Historical Perspective



FFT: Divide and Conquer

One of the most important features of the FFT algorithm is its modularity at 
successive scales - what we now call divide-and-conquer.

Why is divide-and-conquer good? And what is this divide-and-conquer?



FFT: Divide and Conquer

One of the most important features of the FFT algorithm is its modularity at 
successive scales - what we now call divide-and-conquer.

Why is divide-and-conquer good? 

• break a problem into sub-problems
➢ simple and elegant algorithm

➢ speed computations



Tower of Hanoi
Transfer a stack of disks from post A to post B by moving the disks one-at-a-
time, without placing any disk on a smaller disk.



Fast Fourier Transform

• How fast is the FFT (relative to the DFT)?

• Why is the FFT fast?



Computing the DFT

How does the number of operations scale with N?



Computing the DFT
How many operations are required to compute a DFT of length N?

Total number is 1024 × 1024 × 8: nearly 10 million!

The total number of 
operations scales as N2.



Computing the DFT
How many operations are required to compute a DFT of length N?

If we have a signal with 16 sec audio, with fs=44100, it contains 735, 000 samples:
Extrapolating to that length: 221, 492 seconds = 61 hours (> 2.5 days).



Computing the DFT
Much of the direct-form computation is in computing the kernel functions.



Computing the DFT
Much of the direct-form computation is in computing the kernel functions.

Complex exponentials 𝑒𝑗𝜃 are periodic in 𝜃 with period 2π.
N unique values => precompute all of them!



Computing the DFT
What if the input is real-valued? Can we simplify even further?



Computing the DFT
The optimizations that we have discussed so far reduce computation time by a 
(roughly) constant factor.

To reduce the number of computations more drastically, we need to reduce the 
order from O(N2) to a lower order => which is what the FFT algorithm does.

For our earlier discussion of N=735,000, by a factor of 3 is good:



FFT Algorithm
Compute contributions of even and odd numbered input samples separately.

This refactorization reduces an N-point DFT to two N/2-point DFTs.

Is that good?



FFT Algorithm
Compute contributions of even and odd numbered input samples separately.

This refactorization reduces an N-point DFT to two N/2-point DFTs.



FFT Algorithm
Compute contributions of even and odd numbered input samples separately.



Data Path
Draw data paths to help visualize the FFT algorithm.

Start with an 8-point DFT.



Data Path
Write the 8-point DFT in terms of the DFTs of even and odd samples.



Data Path
Write the 8-point DFT in terms of the DFTs of even and odd samples.



Data Path
Write the 8-point DFT in terms of the DFTs of even and odd samples.



Data Path
Write the 4-point DFTs in terms of 2-point DFTs.



Data Path
Write the 2-point DFTs in terms of 1-point DFTs.

What is the result of 1-pt DFT?

Participation question for Lecture



Data Path
The FFT algorithm reduces the explicit DFTs to length 1.



FFT Speed up
The speed of the FFT has had a profound impact on signal processing.



FFT Speed up
The small change in operation count for small N also explains why Gauss was 
not so excited about the method.

Gauss fitted 12 variables to 12 
equations.



Python Code
Consider the following code to implement the FFT algorithm.

Why are there two for loops?

Could we substitute a single loop over all N 
values?



Python Code
Consider the following code to implement the FFT algorithm.

The lengths of the Xe and Xo lists are just N/2.

The first for loop implements the "glue" for the first half of 
the output, the second for loop implements the glue for 
the results for the second half.



Python Code
We can make minor changes to this FFT algorithm to compute the iDFT.

Determine the changes that are needed.

𝑥 𝑛 = ෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑒𝑗
2𝜋𝑘
𝑁 𝑛

𝑋 𝑘 =
1

𝑁
෍

𝑛=0

𝑁−1

𝑥[𝑛] ∙ 𝑒−𝑗
2𝜋𝑘
𝑁 𝑛



Python Code
We can make minor changes to this FFT algorithm to compute the iDFT.

Determine the changes that are needed.

𝑥 𝑛 = ෍

𝑘=0

𝑁−1

𝑋 𝑘 𝑒𝑗
2𝜋𝑘
𝑁 𝑛

𝑋 𝑘 =
1

𝑁
෍

𝑛=0

𝑁−1

𝑥[𝑛] ∙ 𝑒−𝑗
2𝜋𝑘
𝑁 𝑛



Python Code
We can make minor changes to this FFT algorithm to compute the iDFT.

𝑓 𝑛 = ෍

𝑘=0

𝑁−1

𝐹 𝑘 𝑒𝑗
2𝜋𝑘
𝑁 𝑛



Python Code
Consider the following code to implement the FFT algorithm.

This code implements the decimation-in-time 
algorithm.



Decimation in Time
There are many different "FFT" algorithms.

We have been looking at a "decimation in time" algorithm.

https://cnx.org/contents/qAa9OhlP@2.44:zmcmahhR@7/Decimation-in-time-DIT-Radix-2-FFT

Decimation in time: inputs are 
provided in a "scrambled" order.



Decimation in Frequency
There are many different "FFT" algorithms.

Here is a "decimation in frequency" algorithm.

https://cnx.org/contents/qAa9OhlP@2.44:zmcmahhR@7/Decimation-in-time-DIT-Radix-2-FFT

Decimation in frequency: 
outputs are provided in a 
"scrambled" order.



Scrambled Inputs
Decimation in time.

The input samples are in bit-reversed order.



Other FFT Algorithms
A variety of other FFT algorithms have been developed to optimize 
computation.

• to avoid bit-reversal

• in-place algorithms

• generalizing for lengths N not equal to a power of 2.



FFT with Other Radices
What if N is not a power of 2?

Factor N, and apply an algorithm tailored to each factor.

Example: radix 3



The FFT as a Polynomial Representation

Further study: https://www.youtube.com/watch?v=h7apO7q16V0
And Prof. Erik Demaine in 6.1220 (6.046) : https://www.youtube.com/watch?v=iTMn0Kt18tg

https://www.youtube.com/watch?v=h7apO7q16V0


The FFT as a Polynomial Representation

Further study: https://www.youtube.com/watch?v=h7apO7q16V0
And Prof. Erik Demaine in 6.1220 (6.046) : https://www.youtube.com/watch?v=iTMn0Kt18tg

https://www.youtube.com/watch?v=h7apO7q16V0


Summary
The Fast-Fourier Transform (FFT) is an algorithm (actually a family of 
algorithms) for computing the Discrete Fourier Transform (DFT).

Both elegant and useful, the FFT algorithm is arguably the most important 
algorithm in modern signal processing.

• widely used in engineering and science

• elegant mathematics (as alternative representations for polynomials)

• elegant computer science (divide-and-conquer).


	Slide 1: 6.300 Signal Processing
	Slide 2: Fast Fourier Transform
	Slide 3: Historical Perspective
	Slide 4: Historical Perspective
	Slide 5: Historical Perspective
	Slide 6: FFT: Divide and Conquer
	Slide 7: FFT: Divide and Conquer
	Slide 8: Tower of Hanoi
	Slide 9: Fast Fourier Transform
	Slide 10: Computing the DFT
	Slide 11: Computing the DFT
	Slide 12: Computing the DFT
	Slide 13: Computing the DFT
	Slide 14: Computing the DFT
	Slide 15: Computing the DFT
	Slide 16: Computing the DFT
	Slide 17: FFT Algorithm
	Slide 18: FFT Algorithm
	Slide 19: FFT Algorithm
	Slide 20: Data Path
	Slide 21: Data Path
	Slide 22: Data Path
	Slide 23: Data Path
	Slide 24: Data Path
	Slide 25: Data Path
	Slide 26: Data Path
	Slide 27: FFT Speed up
	Slide 28: FFT Speed up
	Slide 29: Python Code
	Slide 30: Python Code
	Slide 31: Python Code
	Slide 32: Python Code
	Slide 33: Python Code
	Slide 34: Python Code
	Slide 35: Decimation in Time
	Slide 36: Decimation in Frequency
	Slide 37: Scrambled Inputs
	Slide 38: Other FFT Algorithms
	Slide 39: FFT with Other Radices
	Slide 40: The FFT as a Polynomial Representation
	Slide 41: The FFT as a Polynomial Representation
	Slide 42: Summary

