6.300 Signal Processing

Week 8, Lecture B: Fast Fourier Transform

- Computation cost
- Recursive

Quiz 2: Tuesday November 4, 2-4pm 50-340

- Closed book except for two pages of written notes (8.5" x 11" both sides)
- No electronic devices (No headphones, cell phones, calculators, ...)
- Coverage up to Week #8 (DFT and FFT); no HW9, a practice quiz will be put on our website.

Fast Fourier Transform

The Fast-Fourier Transform (FFT) is an algorithm (actually a family of algorithms) for computing the Discrete Fourier Transform (DFT).

Both elegant and useful, the FFT algorithm is arguably the most important algorithm in modern signal processing.

- widely used in engineering and science
- elegant mathematics (as alternative representations for polynomials)
- elegant computer science (divide-and-conquer)

It's also interesting from an historical perspective.

Modern interest stems most directly from James Cooley (IBM) and John Tukey (Princeton): "An Algorithm for the Machine Calculation of Complex Fourier Series," published in *Mathematics of Computation* 19: 297-301 (1965).

However there were a number previous, independent discoveries, including Danielson and Lanczos (1942), Runge and König (1924), and most significantly work by Gauss (1805).¹

¹ http://nonagon.org/ExLibris/gauss-fast-fourier-transform

Historical Perspective

Gauss used the basic idea behind the FFT algorithm in his study of the orbit of the then recently discovered asteroid Pallas.

Gauss' data: "declination" X (minutes of arc) v. "ascension" θ (degrees)²

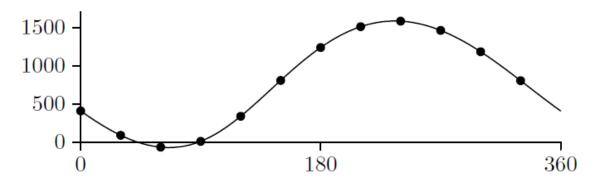
 θ : 0 30 60 90 120 150 180 210 240 270 300 330

 $X: 408 \quad 89 \quad -66 \quad 10 \quad 338 \quad 807 \quad 1238 \quad 1511 \quad 1583 \quad 1462 \quad 1183 \quad 804$

Fitting function:

$$X = f(\theta) = a_0 + \sum_{k=1}^{5} \left[a_k \cos \left(\frac{2\pi k\theta}{360} \right) + b_k \sin \left(\frac{2\pi k\theta}{360} \right) \right] + a_6 \cos \left(\frac{12\pi\theta}{360} \right)$$

Resulting fit:



² B. Osgood, "The Fourier Transform and its Applications"

Historical Perspective

Gauss used the basic idea behind the FFT algorithm in his study of the orbit of the then recently discovered asteroid Pallas.

Gauss' data: "declination" X (minutes of arc) v. "ascension" θ (degrees)² θ : 0 30 60 90 120 150 180 210 240 270 300 330

X: 408 89 -66 10 338 807 1238 1511 1583 1462 1183 804

Fitting function:

$$X = f(\theta) = a_0 + \sum_{k=1}^{5} \left[a_k \cos\left(\frac{2\pi k\theta}{360}\right) + b_k \sin\left(\frac{2\pi k\theta}{360}\right) \right] + a_6 \cos\left(\frac{12\pi\theta}{360}\right)$$

Resulting coefficients:

k:	0	1	2	3	4	5	6
$\overline{a_k}$:	780.6	-411.0	43.4	-4.3	-1.1	0.3	0.1
b_k :	_	-720.2	-2.2	5.5	-1.0	-0.3	_

² B. Osgood, "The Fourier Transform and its Applications"

Historical Perspective

In this work, Gauss introduced least-squares curve fitting and efficient computation of Fourier coefficients.

While you might imagine that Gauss most interested in the latter, as a way to minimize computation (since it was done by hand), he was more interested in understanding the inherent symmetries and using those to generate a robust solution.

Gauss did not even publish the algorithm. The manuscript was written circa 1805 and published posthumously in 1866.

FFT: Divide and Conquer

One of the most important features of the FFT algorithm is its modularity at successive scales - what we now call divide-and-conquer.

Why is divide-and-conquer good? And what is this divide-and-conquer?

FFT: Divide and Conquer

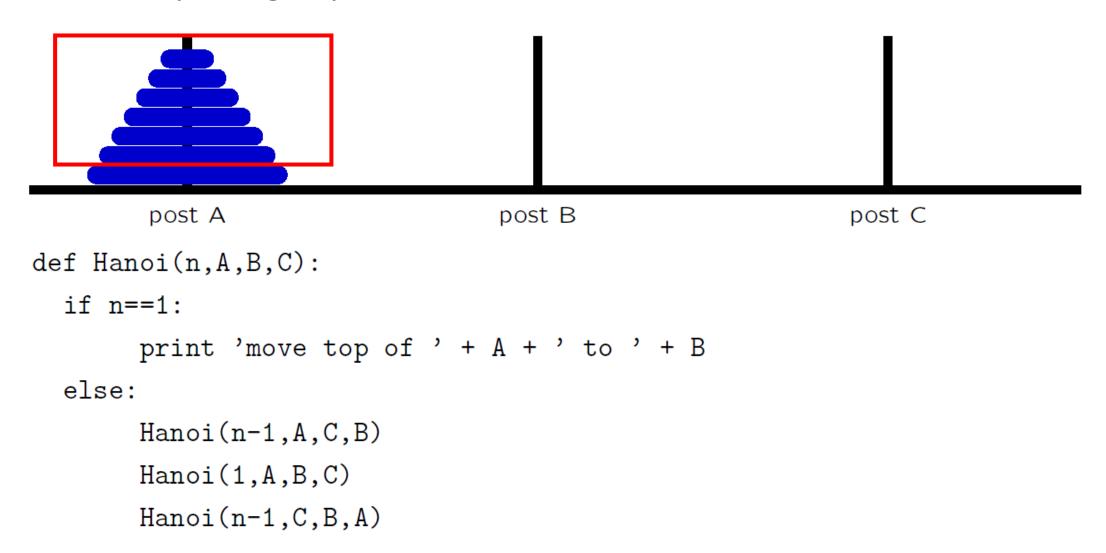
One of the most important features of the FFT algorithm is its modularity at successive scales - what we now call divide-and-conquer.

Why is divide-and-conquer good?

- break a problem into sub-problems
 - > simple and elegant algorithm
 - > speed computations

Tower of Hanoi

Transfer a stack of disks from post A to post B by moving the disks one-at-a-time, without placing any disk on a smaller disk.



Fast Fourier Transform

- How fast is the FFT (relative to the DFT)?
- Why is the FFT fast?

Direct-form computation of DFT in Python.

```
F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}}
                                              from math import e,pi
                                              def DFT(f):
                                                   N = len(f)
Simple (naive) Python implementation:
                                                   F = []
                                                   for k in range(N):
                                                        ans = 0
                                                        for n in range(N):
                                                             ans += f[n]*e**(-2j*pi*k*n/N)/N
                                                        F.append(ans)
```

How many operations are required by this algorithm if N=1024?

1. less than 10,000

- 3. between 100,000 and 1,000,000
- 2. between 10,000 and 100,000 4. greater than 1,000,000

return F

How does the number of operations scale with N?

How many operations are required to compute a DFT of length N?

$$F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}}$$

```
from math import e,pi
def DFT(f):
    N = len(f)
    F = []
    for k in range(N):
        ans = 0
        for n in range(N):
            ans += f[n]*e**(-2j*pi*k*n/N)/N
        F.append(ans)
    return F
```

For each n,k pair (of which there are N^2):

- compute the complex exponent (3 multiplies and a divide),
- raise e to the power of that exponent,
- ullet multiply by f[n] and divide by N, and
- add the result to the appropriate F[k].

The total number of operations scales as N^2 .

Total number is $1024 \times 1024 \times 8$: nearly 10 million!

How many operations are required to compute a DFT of length N?

$$F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}}$$

Empirical results

N	seconds
1024	0.41
2048	1.67
4096	6.70
8192	27.34

```
from math import e,pi
def DFT(f):
    N = len(f)
    F = []
    for k in range(N):
        ans = 0
        for n in range(N):
            ans += f[n]*e**(-2j*pi*k*n/N)/N
        F.append(ans)
    return F
```

If we have a signal with 16 sec audio, with f_s =44100, it contains 735, 000 samples: Extrapolating to that length: 221, 492 seconds = 61 hours (> 2.5 days).

Much of the direct-form computation is in computing the kernel functions.

$$F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}}$$

```
from math import e,pi

def DFT(f):
    N = len(f)
    F = []
    for k in range(N):
        ans = 0
        for n in range(N):
            ans += f[n]*e**(-2j*pi*k*n/N)/N
        F.append(ans)
    return F
```

Much of the direct-form computation is in computing the kernel functions.

Complex exponentials $e^{j\theta}$ are periodic in θ with period 2π .

N unique values => precompute all of them!

```
from math import e,pi
def DFTprecompute(f):
    N = len(f)
    bases = [e**(-2j*pi*m/N)/N for m in range(N)]
    F = []
    for k in range(N):
        ans = 0
        for n in range(N):
            ans += f[n]*bases[k*n%N]
        F.append(ans)
    return F
```

N	direct (sec.)	pre-computing
1024	0.41	0.13
2048	1.67	0.54
4096	6.70	2.15
8192	27.34	9.01

Pre-computing kernel functions reduces run-time more than a factor of 3.

What if the input is real-valued? Can we simplify even further?

```
from math import e,pi
def DFTprecompute(f):
    N = len(f)
    bases = [e**(-2j*pi*m/N)/N \text{ for m in range}(N)]
    F = []
    for k in range(N):
         ans = 0
         for n in range(N):
             ans += f[n]*bases[k*n%N]
         F.append(ans)
     return F
If f[n] is real-valued, then F[k] is conjugate symmetric:
```

$$F[-k] = F^*[k]$$

We can compute F[k] for $0 \le k < N/2$ using the DFT algorithm and then set $F[-k] = F[N-k] = F^*[k]$ for the remaining values of k.

→ approximately a factor of 2 reduction in operations

The optimizations that we have discussed so far reduce computation time by a (roughly) constant factor.

For our earlier discussion of N=735,000, by a factor of 3 is good:

```
221,492\,\mathrm{seconds}=61\,\mathrm{hours}~(>2.5\,\mathrm{days}) 	o 73,831\,\mathrm{seconds}=20\,\mathrm{hours}~(\mathrm{most~of~one~day}) or by a factor of 6 is even better 	o 36,916\,\mathrm{seconds}=10\,\mathrm{hours} the resulting computation is still slow.
```

To reduce the number of computations more drastically, we need to reduce the order from $O(N^2)$ to a lower order => which is what the FFT algorithm does.

FFT Algorithm

Compute contributions of even and odd numbered input samples separately.

$$\begin{split} F[k] &= \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} \\ &= \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} + \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} \\ &= \frac{1}{N} \sum_{n=0}^{N/2-1} f[2m] e^{-j\frac{2\pi k(2m)}{N}} + \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi k(2m+1)}{N}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N/2} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N/2} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N/2} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N/2} e^{-j\frac{2\pi km}{N}} \underbrace{\frac{1}{N/2} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}}}_{\text{DFT of even numbered inputs}} \end{split}$$

This refactorization reduces an N-point DFT to two N/2-point DFTs.

Is that good?

FFT Algorithm

Compute contributions of even and odd numbered input samples separately.

$$\begin{split} F[k] &= \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} \\ &= \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} + \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} \\ &= \frac{1}{N} \sum_{n=0}^{N/2-1} f[2m] e^{-j\frac{2\pi k(2m)}{N}} + \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi k(2m+1)}{N}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi k}{N}} \underbrace{\frac{1}{N/2} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}}}_{\text{DFT of odd numbered inputs}} \end{split}$$

This refactorization reduces an N-point DFT to two N/2-point DFTs.

$$N^2 \to 2\left(\frac{N}{2}\right)^2 + N = \frac{1}{2}N^2 + N$$

where the additional N comes from "gluing" the two halves together.

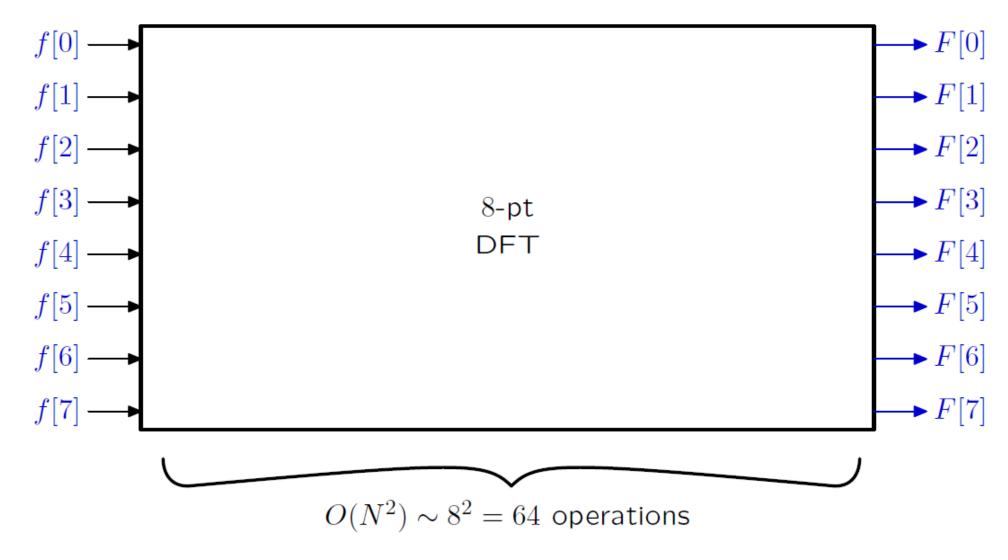
FFT Algorithm

Compute contributions of even and odd numbered input samples separately.

$$\begin{split} F[k] &= \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} \\ &= \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} + \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} \\ &= \frac{1}{N} \sum_{n=0}^{N/2-1} f[2m] e^{-j\frac{2\pi k(2m)}{N}} + \frac{1}{N} \sum_{n=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi k(2m+1)}{N}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N}} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N}} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N}} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N}} \sum_{m=0}^{N/2-1} f[2m+1] e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} \sum_{m=0}^{N/2-1} f[2m] e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} \\ &= \frac{1}{N} e^{-j\frac{2\pi km}{N/2}} + \frac{1}{N} e^{-j\frac{2\pi km}{N/$$

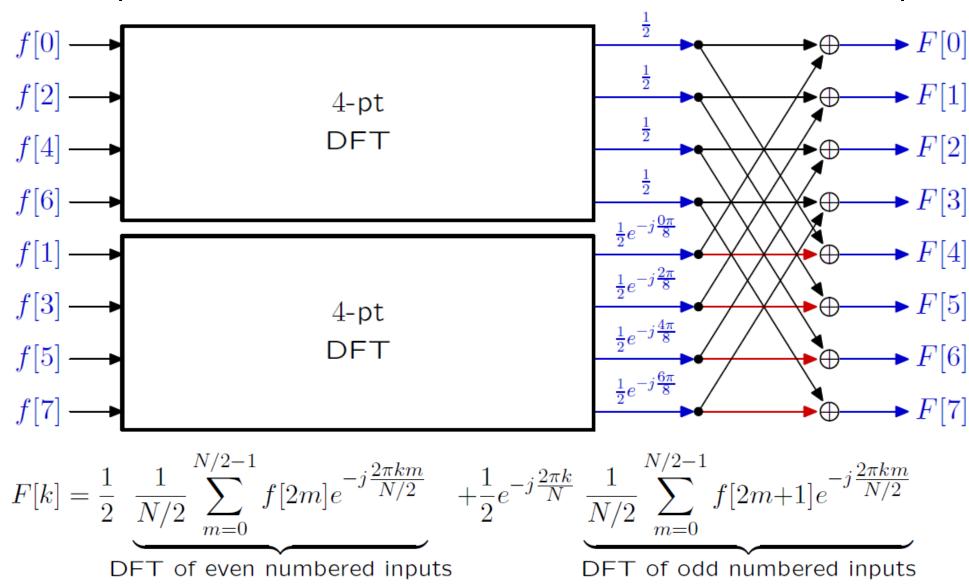
Reducing from N^2 to $\frac{1}{2}N^2$ is good – but it's only a factor of 2. We have already seen several instances of reduction by a constant factor. This reduction is different: it can be applied **recursively**.

Draw data paths to help visualize the FFT algorithm.

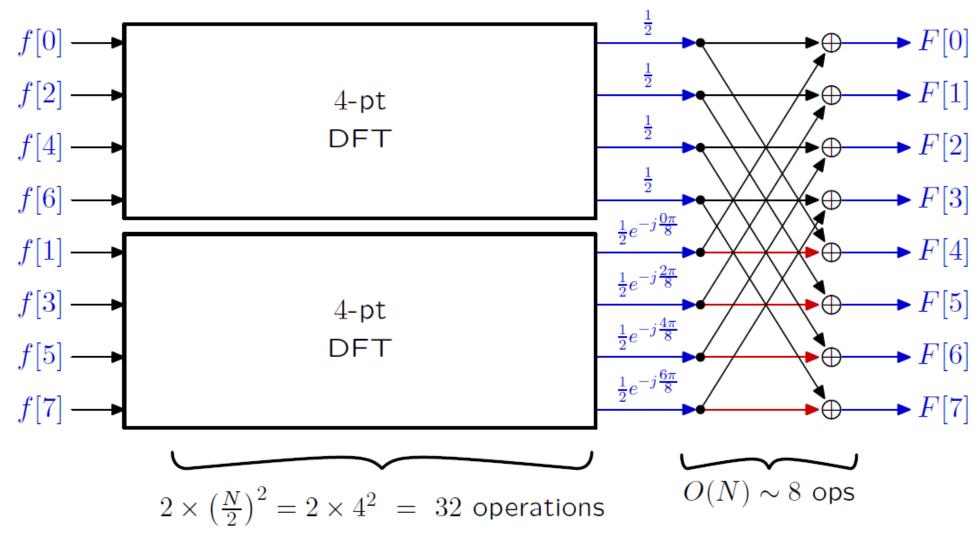


Start with an 8-point DFT.

Write the 8-point DFT in terms of the DFTs of even and odd samples.



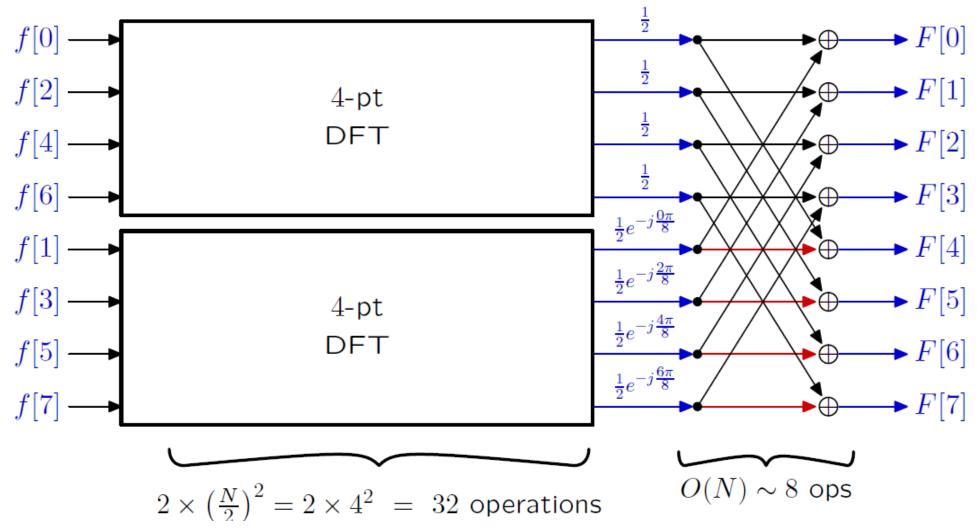
Write the 8-point DFT in terms of the DFTs of even and odd samples.



The numbers above the blue arrows represent multiplicative constants.

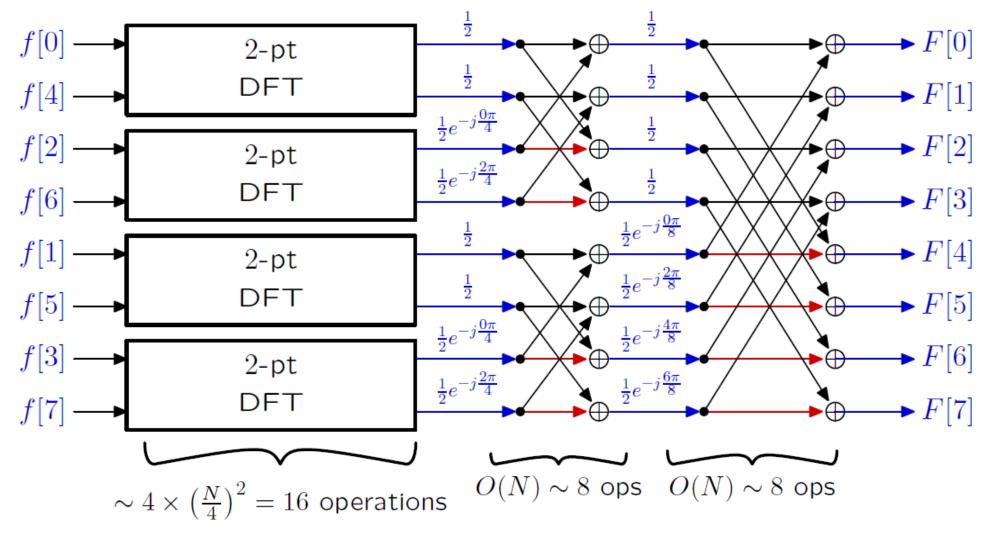
The red arrows represent multiplication by $e^{-j\pi} = -1$.

Write the 8-point DFT in terms of the DFTs of even and odd samples.



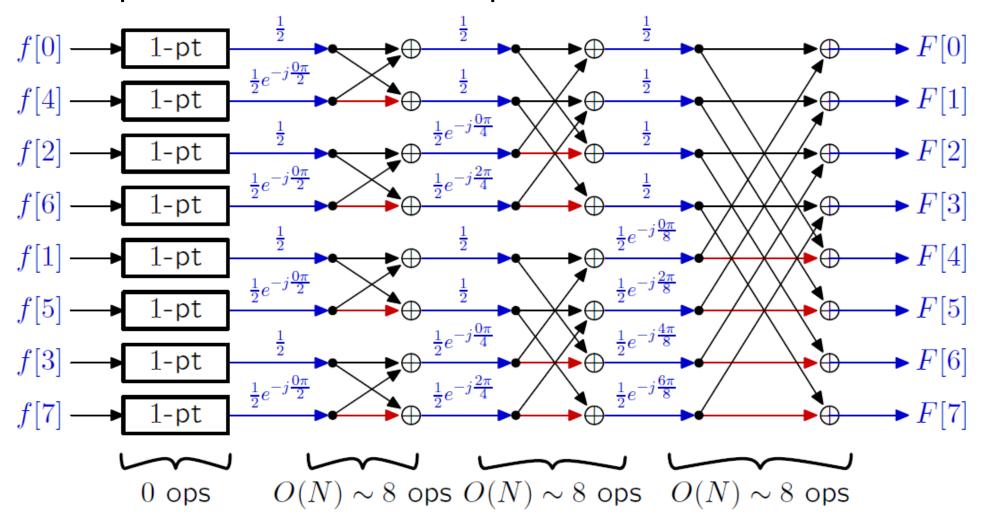
The number of operations to compute the DFTs is half that of the original. But we have $\mathcal{O}(N)$ operations to combine the even and odd results.

Write the 4-point DFTs in terms of 2-point DFTs.



The number of operations to compute the DFTs is one-fourth that of the original. But we have twice as many operations to combine the parts.

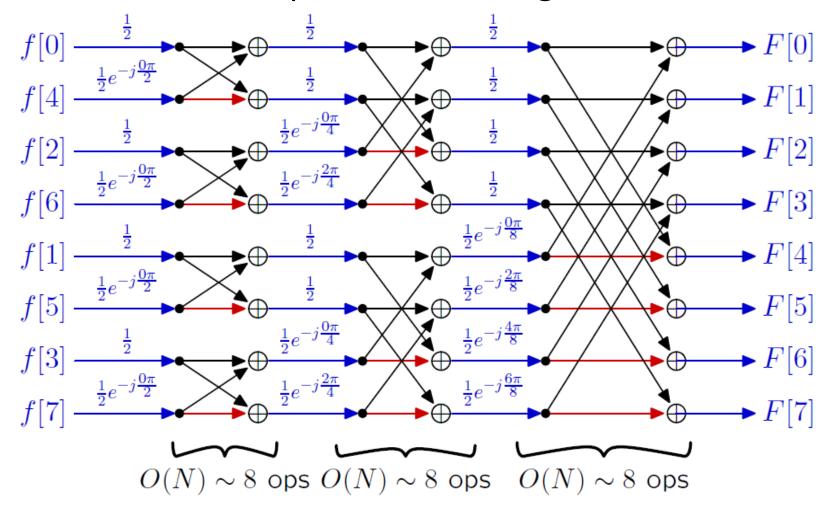
Write the 2-point DFTs in terms of 1-point DFTs. Participation question for Lecture



No operations are required to compute the 1-point DFTs.

But we have three times as many operations to combine the parts.

The FFT algorithm reduces the explicit DFTs to length 1.



All that remains to calculate is "glue". There are $\log_2(N)$ stages of glue and each is O(N). So the algorithm is $N\log_2(N)$.

FFT Speed up

The speed of the FFT has had a profound impact on signal processing.

N	DFT	FFT	speed-up
2	4	2	2.0
4	16	8	2.0
8	64	24	2.7
16	256	64	4.0
32	1,024	160	6.4
64	4,096	384	10.7
128	16,384	896	18.3
256	65,536	2,048	32.0
512	262,144	4,608	56.9
1.024	1,048,576	10,240	102.4
2,048	4,194,304	22,528	186.2
4,096	16,777,216	49,152	341.3
8,192	67,108,864	106,496	630.2
16,384	268,435,456	229,376	1,170.3
32,768	1,073,741,824	491,520	2,184.5
65,536	4,294,967,296	1,048,576	4,096.0
131,072	17,179,869,184	2,228,224	7,710.1
262,144	68,719,476,736	4,718,592	14,563.6
524,288	274,877,906,944	9,961,472	27,594.1
1,048,576	1,099,511,627,776	20,971,520	52,428.8

FFT Speed up

The small change in operation count for small N also explains why Gauss was not so excited about the method.

N	DFT	FFT	speed-up
2	4	2	2.0
4	16	8	2.0
8	64	24	2.7
16	256	64	4.0
32	1,024	160	6.4
64	4,096	384	10.7
128	16,384	896	18.3
256	65,536	2,048	32.0
512	262,144	4,608	56.9
1,024	1,048,576	10,240	102.4
2,048	4,194,304	22,528	186.2
4,096	16,777,216	49,152	341.3
8,192	67,108,864	106,496	630.2
16,384	268,435,456	229,376	1,170.3
32,768	1,073,741,824	491,520	2,184.5
65,536	4,294,967,296	1,048,576	4,096.0
131,072	17,179,869,184	2,228,224	7,710.1
262,144	68,719,476,736	4,718,592	14,563.6
524,288	274,877,906,944	9,961,472	27,594.1
1,048,576	1,099,511,627,776	20,971,520	52,428.8

Gauss fitted 12 variables to 12 equations.

Speedup would be $\frac{12 \times 12}{12 \times \log_2(12)} \approx 3.3$.

Consider the following code to implement the FFT algorithm.

```
from math import e,pi
def FFT(x):
    N = len(x)
   if N==1:
       return x
   if N\%2 != 0:
       print('N must be even')
       exit(1)
    xe = x[::2]
    xo = x[1::2]
                                        values?
    Xe = FFT(xe)
    Xo = FFT(xo)
    X = []
    for k in range(N//2):
        X.append((Xe[k]+e**(-2j*pi*k/N)*Xo[k])/2)
    for k in range (N//2):
        X.append((Xe[k]-e**(-2j*pi*k/N)*Xo[k])/2)
    return X
```

Why are there two for loops?

Could we substitute a single loop over all N values?

Consider the following code to implement the FFT algorithm.

4-pt

DFT

4-pt DFT

```
from math import e,pi
def FFT(x):
    N = len(x)
    if N==1:
       return x
   if N\%2 != 0:
       print('N must be even')
       exit(1)
    xe = x[::2]
                              The lengths of the Xe and Xo lists are just N/2.
    xo = x[1::2]
    Xe = FFT(xe)
                              The first for loop implements the "glue" for the first half of
    Xo = FFT(xo)
                              the output, the second for loop implements the glue for
    X = []
                              the results for the second half.
    for k in range(N//2):
        X.append((Xe[k]+e**(-2j*pi*k/N)*Xo[k])/2)
    for k in range(N//2):
        X.append((Xe[k]-e**(-2j*pi*k/N)*Xo[k])/2)
    return X
```

We can make minor changes to this FFT algorithm to compute the iDFT.

```
from math import e,pi
def iFFT(X):
    N = len(X)
    if N==1:
         return X
                                                     Determine the changes that are needed.
    if N\%2 != 0:
        print('N must be even')
         exit(1)
                                                            X[k] = \frac{1}{N} \sum_{n=1}^{N-1} x[n] \cdot e^{-j\frac{2\pi k}{N}n}
    Xe = X[::2]
    Xo = X[1::2]
    xe = iFFT(Xe)
                                                             x[n] = \sum_{k=1}^{N-1} X[k]e^{j\frac{2\pi k}{N}n}
    x_0 = iFFT(x_0)
    x = []
    for k in range(N//2):
         x.append((xe[k]+e**(2j*pi*k/N)*xo[k]))
    for k in range(N//2):
         x.append((xe[k]-e**(2j*pi*k/N)*xo[k]))
    return X
```

We can make minor changes to this FFT algorithm to compute the iDFT.

```
from math import e,pi
def_{i}FFT(X):
    N = len(X)
   if N==1:
       return X
   if N\%2 != 0:
       print('N must be even')
       exit(1)
   Xe = X[::2]
   X_0 = X[1::2]
   xe = iFFT(Xe)
    x_0 = iFFT(x_0)
   x = []
    for k in range(N//2):
        x.append((xe[k]+e**(2j*pi*k/N)*xo[k]))
    for k in range(N//2):
        x.append((xe[k]-e**(2j*pi*k/N)*xo[k]))
    return X
```

Determine the changes that are needed.

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \cdot e^{-j\frac{2\pi k}{N}n}$$

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi k}{N}n}$$

We can make minor changes to this FFT algorithm to compute the iDFT.

```
from math import e,pi
def_{i}FFT(X):
    N = len(X)
    if N==1:
       return X
   if N\%2 != 0:
       print('N must be even')
       exit(1)
   Xe = X[::2]
   X_0 = X[1::2]
   xe = iFFT(Xe)
    x_0 = iFFT(x_0)
   x = []
    for k in range(N//2):
        x.append((xe[k]+e**(2j*pi*k/N)*xo[k]))
    for k in range(N//2):
        x.append((xe[k]-e**(2j*pi*k/N)*xo[k]))
    return X
```

- 1. negate the complex exponents
- 2. remove the divisions by 2

$$f[n] = \sum_{k=0}^{N-1} F[k] e^{j\frac{2\pi k}{N}n}$$

$$F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}}$$

$$=\frac{1}{2}\underbrace{\frac{1}{N/2}\sum_{m=0}^{N/2-1}f[2m]e^{-j\frac{2\pi km}{N/2}}}_{\text{DFT of even numbered inputs}} + \frac{1}{2}e^{-j\frac{2\pi k}{N}}\underbrace{\frac{1}{N/2}\sum_{m=0}^{N/2-1}f[2m+1]e^{-j\frac{2\pi km}{N/2}}}_{\text{DFT of odd numbered inputs}}$$

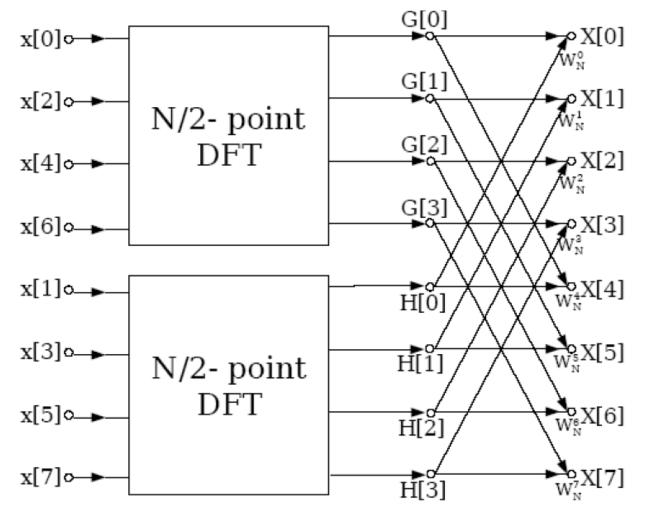
Consider the following code to implement the FFT algorithm.

```
from math import e,pi
def FFT(x):
    N = len(x)
   if N==1:
       return x
   if N\%2 != 0:
       print('N must be even')
                                        This code implements the decimation-in-time
       exit(1)
                                        algorithm.
    xe = x[::2]
    xo = x[1::2]
    Xe = FFT(xe)
    Xo = FFT(xo)
    X = []
    for k in range(N//2):
        X.append((Xe[k]+e**(-2j*pi*k/N)*Xo[k])/2)
    for k in range (N//2):
        X.append((Xe[k]-e**(-2j*pi*k/N)*Xo[k])/2)
    return X
```

Decimation in Time

There are many different "FFT" algorithms.

We have been looking at a "decimation in time" algorithm.



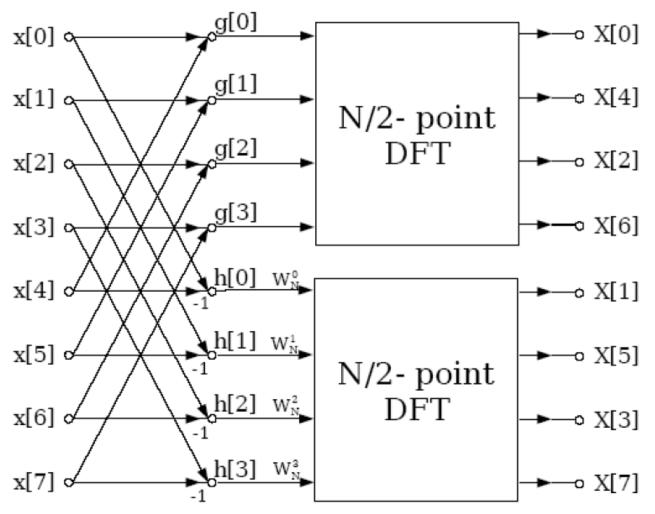
Decimation in time: inputs are provided in a "scrambled" order.

https://cnx.org/contents/qAa9OhlP@2.44:zmcmahhR@7/Decimation-in-time-DIT-Radix-2-FFT

Decimation in Frequency

There are many different "FFT" algorithms.

Here is a "decimation in frequency" algorithm.

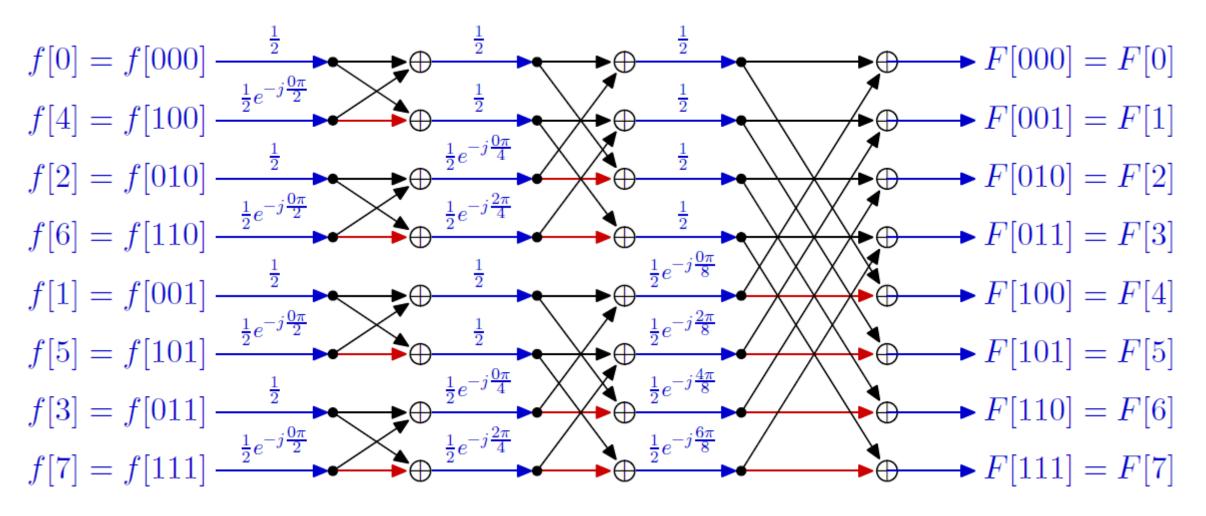


Decimation in frequency: outputs are provided in a "scrambled" order.

https://cnx.org/contents/qAa9OhlP@2.44:zmcmahhR@7/Decimation-in-time-DIT-Radix-2-FFT

Scrambled Inputs

Decimation in time.



The input samples are in bit-reversed order.

Other FFT Algorithms

A variety of other FFT algorithms have been developed to optimize computation.

- to avoid bit-reversal
- in-place algorithms
- generalizing for lengths N not equal to a power of 2.

FFT with Other Radices

What if N is not a power of 2?

Factor N, and apply an algorithm tailored to each factor.

Example: radix 3

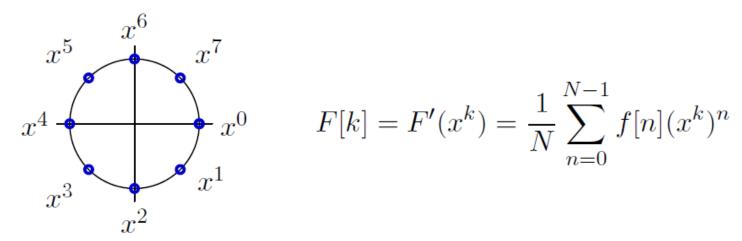
$$\begin{split} F[k] &= \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}} \\ &= \frac{1}{N} \sum_{m=0}^{N/3-1} f[3m] e^{-j\frac{2\pi k(3m)}{N}} + \frac{1}{N} \sum_{m=0}^{N/3-1} f[3m+1] e^{-j\frac{2\pi k(3m+1)}{N}} + \frac{1}{N} \sum_{m=0}^{N/3-1} f[3m+2] e^{-j\frac{2\pi k(3m+2)}{N}} \\ &= \frac{1}{3} \frac{1}{N/3} \sum_{m=0}^{N/3-1} f[3m] e^{-j\frac{2\pi km}{N/3}} \\ &+ \frac{1}{3} \frac{1}{N/3} e^{-j2\pi k/N} \sum_{m=0}^{N/3-1} f[3m+1] e^{-j\frac{2\pi km}{N/3}} \\ &+ \frac{1}{3} \frac{1}{N/3} e^{-j4\pi k/N} \sum_{m=0}^{N/3-1} f[3m+2] e^{-j\frac{2\pi km}{N/3}} \\ &= \frac{1}{3} \mathrm{DFT(block} \ 0) + \frac{1}{3} e^{-j\frac{2\pi k}{N}} \mathrm{DFT(block} \ 1) + \frac{1}{3} e^{-j\frac{4\pi k}{N}} \mathrm{DFT(block} \ 2) \end{split}$$

The FFT as a Polynomial Representation

Think about the DFT

$$F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kn}{N}}$$

as values of an underlying frequency representation $F'(\cdot)$ at points x^k in the complex plane, where $x=e^{-j2\pi/N}$.



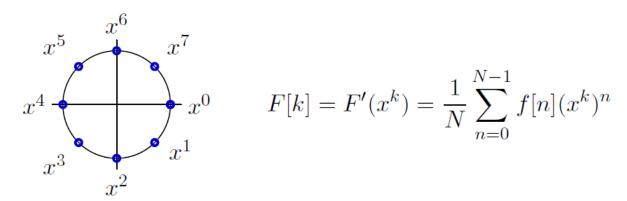
 $F'(x^k)$ can be computed as a polynomial in x^k with coefficients f[n]. Evaluating the polynomial yields the frequency representation $F'(\cdot)$ and sampling $F'(\cdot)$ at powers of the N^{th} root of unity provides the DFT.

The FFT as a Polynomial Representation

Separating **even** and **odd** powers of n to make two polynomials reduces the number of computations.

Values of the **even** polynomial will be symmetric about x=0, so the values for k=N/2 to N-1 can be inferred from those for k=0 to N/2-1.

Values of the **odd** polynomial will be anti-symmetric about x=0, so the values for k=N/2 to N-1 can also be inferred from those for k=0 to N/2-1.



This halves the number of computations required. But we can do better.

Recursively apply this decomposition on the even and odd parts \rightarrow **FFT**.

Summary

The Fast-Fourier Transform (FFT) is an algorithm (actually a family of algorithms) for computing the Discrete Fourier Transform (DFT).

Both elegant and useful, the FFT algorithm is arguably the most important algorithm in modern signal processing.

- widely used in engineering and science
- elegant mathematics (as alternative representations for polynomials)
- elegant computer science (divide-and-conquer).