6.300 Signal Processing

Week 8, Lecture B:
Fast Fourier Transform

* Computation cost

e Recursive

Quiz 2: Tuesday November 4, 2-4pm 50-340

* Closed book except for two pages of written notes (8.5’ x 11°’ both sides)

* No electronic devices (No headphones, cell phones, calculators, ...)

* Coverage up to Week #8 (DFT and FFT); no HW9, a practice quiz will be put on our website.

Fast Fourier Transform

The Fast-Fourier Transform (FFT) is an algorithm (actually a family of
algorithms) for computing the Discrete Fourier Transform (DFT).

Both elegant and useful, the FFT algorithm is arguably
the most important algorithm in modern signal processing.

— widely used in engineering and science
— elegant mathematics (as alternative representations for polynomials)

— elegant computer science (divide-and-conquer)

It's also interesting from an historical perspective.
Modern interest stems most directly from James Cooley (IBM) and John

Tukey (Princeton): " An Algorithm for the Machine Calculation of Complex
Fourier Series,” published in Mathematics of Computation 19: 297-301 (1965).

However there were a number previous, independent discoveries, includ-
ing Danielson and Lanczos (1942), Runge and Konig (1924), and most

significantly work by Gauss (1805).1

I http: //nonagon.org/ExLibris /gauss-fast-fourier-transform

Historical Perspective

Gauss used the basic idea behind the FFT algorithm in his study of the
orbit of the then recently discovered asteroid Pallas.

Gauss' data: “declination” X (minutes of arc) v. ‘“ascension’ 0 (degrees)?
f: 0 30 60 90 120 150 180 210 240 270 300 330
X: 408 89 —66 10 338 807 1238 1511 1583 1462 1183 804
Fitting function:

| 2mk6 . [27k6 (1276
X = f(0) =ag+ Z [ak_ COS (360) + by sin (360)] + ag cos (260)

k=1
Resulting fit:

[l

1500 -
1000 -
500

o>

T)
0 180 360

2 B, Osgood. “The Fourier Transform and its Applications”

Historical Perspective

Gauss used the basic idea behind the FFT algorithm in his study of the
orbit of the then recently discovered asteroid Pallas.

Gauss' data: “declination” X (minutes of arc) v. ‘“ascension’ 0 (degrees)?
f: 0 30 60 90 120 150 180 210 240 270 300 330
X: 408 89 —66 10 338 807 1238 1511 1583 1462 1183 804

Fitting function:

| 2mk6 . [27k6 (1276
X = f(0) =ag+ Z [ak_ COS (360) + by sin (360)] + ag cos (260)

k=1

[l

Resulting coefficients:

k : 0 1 2 3 4 5 6
ap: 306 —411.0 434 —-4.3 —1.1 0.3 0.1
by - —=720.2 2.2 5.5 —1.0 —=0.3 —

2 B, Osgood. “The Fourier Transform and its Applications”

Historical Perspective

In this work, Gauss introduced least-squares curve fitting and efficient com-
putation of Fourier coefficients.

While you might imagine that Gauss most interested in the latter, as a
way to minimize computation (since it was done by hand), he was more

iInterested in understanding the inherent symmetries and using those to
generate a robust solution.

Gauss did not even publish the algorithm. The manuscript was written
circa 1805 and published posthumously in 1866.

FFT: Divide and Conquer

One of the most important features of the FFT algorithm is its modularity at
successive scales - what we now call divide-and-conquer.

Why is divide-and-conquer good? And what is this divide-and-conquer?

FFT: Divide and Conquer

One of the most important features of the FFT algorithm is its modularity at
successive scales - what we now call divide-and-conquer.

Why is divide-and-conquer good?

* break a problem into sub-problems
» simple and elegant algorithm
» speed computations

Tower of Hanoi

Transfer a stack of disks from post A to post B by moving the disks one-at-a-
time, without placing any disk on a smaller disk.

post A post B post C
def Hanoi(n,A,B,C):

if n==1:

print ’move top of ° + A+ ’ to ’ + B
else:

Hanoi(n-1,A,C,B)

Hanoi(1,A,B,C)

Hanoi(n-1,C,B,A)

Fast Fourier Transform

 How fast is the FFT (relative to the DFT)?
* Why is the FFT fast?

Computing the DFT

Direct-form computation of DFT in Python.

N—1 o
Pwk]_‘_ifzz:tfhﬂe_jzﬁén from math import e,pi
N & def DFT(f):
Simple (naive) Python implementation: N = l[]en(f)
F =
for k in range(N):
ans = 0

for n in range(N):
ans += f[n]*ex*x(-2j*pixk*n/N)/N
F.append(ans)
return F

How many operations are required by this algorithm if N = 10247
1. less than 10,000 3. between 100,000 and 1,000,000
2. between 10,000 and 100,000 4. greater than 1,000,000

How does the number of operations scale with N?

Computing the DFT

How many operations are required to compute a DFT of length N?

from math import e,pi
def DFT(f):
N = len(f)
F =[]
for k in range(N):
ans = 0

for n in range(N):
ans += f[n]*ex*x(-2j*pi*k*n/N)/N
F.append(ans)
return F

For each n,k pair (of which there are N?):
e compute the complex exponent (3 multiplies and a divide),

The total number of
operations scales as N?.

e raise e to the power of that exponent,
e multiply by f[n| and divide by N, and
e add the result to the appropriate F'[k].

Total number is 1024 x 1024 x 8: nearly 10 million!

Computing the DFT

How many operations are required to compute a DFT of length N?

from math import e,pi

N-1
Flk] = % 3 Fln)e SR def DFT(f):
N = N = len(f)
F = []
for k in range(N):
ans = 0
o for n in range(N):
Empjrlcal results ans += f[n]*ex*x(-2j*xpixk*n/N)/N
N seconds F.append(ans)
1024 0.41 return F
2048 1.67
4096 6.70
8192 27.34

If we have a signal with 16 sec audio, with f.=44100, it contains 735, 000 samples:
Extrapolating to that length: 221, 492 seconds = 61 hours (> 2.5 days).

Computing the DFT

Much of the direct-form computation is in computing the kernel functions.

from math import e,pi

1 Nl _ 2rkn
Flk] = > flnle TN def DFT(f):
© =0 N = len(f)
F = []
for k in range(N):
ans = 0

for n in range(N):
ans += f[n]*ex*x(-2j*pi*k*n/N)/N
F.append(ans)
return F

Computing the DFT
Much of the direct-form computation is in computing the kernel functions.

Complex exponentials e/? are periodic in 8 with period 2.

N unique values => precompute all of them! from math import e,pi
def DFTprecompute(f):

N = len(f)
bases = [exx(-2j*pi*m/N)/N for m in range(N)]
F =[]

for k in range(N):
ans = 0
for n in range(N):
ans += f[n]*bases[k*njN]
F.append(ans)

return F
N direct (sec.) pre-computing |
1024 0.41 0.13
2048 1.67 0.54
4096 6.70 2.15
8192 27.34 9.01

Pre-computing kernel functions reduces run-time more than a factor of 3.

Computing the DFT

What if the input is real-valued? Can we simplify even further?

from math import e,pi
def DFTprecompute(f):
N = len(f)
bases = [ex*(-2j*pi*m/N)/N for m in range(N)]
F =[]
for k in range(N):
ans = 0
for n in range(N):
ans += f[n]*bases[k*n/N]
F.append(ans)
return F

If f|n| is real-valued, then F'[k| is conjugate symmetric:

FI-k] = F*[i
We can compute F'|k]| for 0 < k < N/2 using the DFT algorithm and then
set F|—k| = F[N—k| = F*[k| for the remaining values of k.

— approximately a factor of 2 reduction in operations

Computing the DFT

The optimizations that we have discussed so far reduce computation time by a
(roughly) constant factor.

For our earlier discussion of N=735,000, by a factor of 3 is good:
221,492 seconds = 61 hours (> 2.5 days)
— 73,831 seconds = 20 hours (most of one day)
or by a factor of 6 is even better
— 36,916 seconds = 10 hours
the resulting computation is still slow.

To reduce the number of computations more drastically, we need to reduce the
order from O(N?) to a lower order => which is what the FFT algorithm does.

FFT Algorithm
Compute contributions of even and odd numbered input samples separately.

N—1

2mkn
Flk] = Z flnle V"N

N—-1
1 27kn 1 - 2mkn
= = E flnle ™ N + 5 E flnle™ ™ N

n=>0) n=>0

n even n odd
1 . 27k(2m))ﬂk()rr}—i—l

= — 2mle 17 E m+1] N

\/ Z f 1\; f

m=>_0 m=0
1 j2km 1 omk N/j2—1 j2mkm
- P b v N
=5 Z fl2m]e +2f_ N f) Z f2m+1]e

N m=0 | N m=0 |
DFT of even numbered inputs DFT of odd numbered inputs

This refactorization reduces an N-point DFT to two N/2-point DFTs.

Is that good?

FFT Algorithm

Compute contributions of even and odd numbered input samples separately.

2 kn
Z flnle™” N
j{: bf QIEE_ 1 Nl jT } —jQﬁER
7? N - n\e N
N ¥ 2

n=>0) n=>0
n even n odd
27k (2m))ﬂk(’nr+l

— 2mle 17 m+1] N

Z fl o EZ f2

m=>_0 m=0
1 j2km 1 2k N/j2—1 j2mkm
- "NJ/2 S TN
=5 N Z f12mle +2< f) Z f12m+1le

N 1=0 | N m=0 |

DFT of even numbered inputs DFT of odd numbered inputs

This refactorization reduces an N-point DFT to two N/2-point DFTs.
N2 52N e N =INZ4 N

where the additional N comes from ‘gluing’ the two halves together.

FFT Algorithm

Compute contributions of even and odd numbered input samples separately.

1 .-‘ 2mkn
J
Flk] = > fInfe™ A
T n=0
1 V=T _j2mkn 27&?1 27&?1
=N E finle E finle™
B n=0 n=~0
n even n odd
1 27'k 2m) N/2—1)Wk(’rrj—i—l
= — fl2mle N Z fl2m+1]e N
N Z J\.f
m=0 m=0
_ N/2— _ N/2—1
1 1 27&;;1 1 Lork 1 27km
= - = 2?’?? = +—e /N 2?’??+1
Y, Z 5 v 2
DFT of even numbered inputs DFT of odd numbered inputs

Reducing from N? to %NQ is good — but it's only a factor of 2.
We have already seen several instances of reduction by a constant factor.
T his reduction is different: it can be applied recursively.

Data Path
Draw data paths to help visualize the FFT algorithm.

£10
§

P IH’_“I P d P

> [
L [
— [
8-pt — [
DFT T
— [
— [
— [
_ —~

O(N?) ~ 8% = 64 operations

Start with an 8-point DFT.

Data Path

Write the 8-point DFT in terms of the DFTs of even and odd samples.

f10] ::l
fl2

3

!

=

_1
2

"\ >D— F'|0)]
2 -
4-Dt : "\\/ »D > Fl
1
: >O—» F[3]
1 XXX B
>D » |4
¥ XX
A_ ...('T'\ > F
4-pt - / A\w >
DFT NS > Il6
%f‘-‘_-jﬁ%i./ o
“ >D— L[7]
N/2—-1)Trkm . N/2—1 Orkm
1 _ 2k 1 -7 HT ..nl
Z f12ml]e +-e /N o Z f[2m+1]e = N/2
/2 m=0 - N /2 m=>0

DFT of even numbered inputs

-

DFT of odd numbered inputs

Data Path
Write the 8-point DFT in terms of the DFTs of even and odd samples.

4-pt

2k T
o II-F./A\MMI N
T
- T E ; -
5] —» DFT - »D » |6
ST -6 ST
. %E'—‘_'j?./ \ -
fl7] —» »D » [T

O(N) ~ 8 ops

£10] ::l - -\ >D— F[0]
- .

f12] 4-pt - "\\/"‘® > [']1]

fl4] —» DFT E W® > F'[2]
1

f16] —» = >D » ['[3]

f[1 >O— 4

fl3 > » F'|5

f

f

] 2 ‘

% (;)” — 2 x 4% = 32 operations

The numbers above the blue arrows represent multiplicative constants.
The red arrows represent multiplication by e IT = 1.

Data Path
Write the 8-point DFT in terms of the DFTs of even and odd samples.

£10] > [']0]
f12] ::I 4-pt = > F'[1]
4] — DET ' > F[2]
> [[3]
> 4]
> 1[5]
» F'[6]
> [

Y

e [

e e e e e e
—_ < 4
E ! é!/ /1
>v § r<v
O* D 9\‘9 @

S

U=
M=t
Y Y
& e‘/e

L _‘\:ln

\ N / e
2 X (;)3 = 2 x 42 = 32 operations O(N) ~ 8 ops
The number of operations to compute the DFTs is half that of the original.

But we have O(N) operations to combine the even and odd results.

Data Path
Write the 4-point DFTs in terms of 2-point DFTSs.

1 1
3 3

o ot VRN o
| I
| DFT o— D 1]
f —_L L U*>O§ ! .\\/;‘\.u > Fl
f[2] —» 2-pt - 3 W® -2
1,- 1
6l DET 2¢ .Am 2 > » ['[3]
f] 1 lf_j%:mw el
1] 9_ - >D— >D > F'[4]
fl1) 2-pt) & ;E_‘—_j%m\“ &
s N AN
13| —» 2-pt “ S - ~ HO

~ 4 x (&))" = 16 operations O(N) ~8ops O(N)~8 ops

The number of operations to compute the DFTs is one-fourth that of the
original. But we have twice as many operations to combine the parts.

Data Path What is the result of 1-pt DFT?

Write the 2-point DFTs in terms of 1-point DFTs. Participation question for Lecture

: .i

fl0]— 1-pt 2 : :><'i® 2 '\/";@ 2 .\ >O— [[0)]
- %ti‘_-j_% 1 L -
fl4 — 1-pt |— Acy : :><>2® 2 _\ >D>— 1]
f2 —DI 1-Dt 2 : ><E® 2 2 o 5 Z@ FFQ
f16] —» 1-pt >D— >D— : > » ['|3]
. e 1 %f‘-‘_j?: .
fl1] —s_1-pt : e — - : C : C-:@ > ['[4
5 DG Ao ks
f[5] — 1-pt 5 »(D— > (B » F'|5
. .1 W X% 1% [\ 5
/13 A'I 1-pt - »(D— >D— > » |6
: £y _'j%;:><: %ta‘_-j%i %f;_-j%l./ \
fT —-I 1-pt »D— »(D— »D > [7

—J L—J — —VJ
0 ops O(N)~8ops O(N)~8ops O(N)~8 ops

No operations are required to compute the 1-point DF Ts.
But we have three times as many operations to combine the parts.

Data Path
The FFT algorithm reduces the explicit DFTs to length 1.

=t

p—
e
¢ e
2] =
b2

> F'[0)]
> F'[1]
> F[2)]
> F'[3]
> F'[4]

= »D A b >]!
- , ...@ - : » (5 PF()

> |

o=
=
|
]
-
=]
o5

O D
]
D D
LY.
D P

Y
D
% O D i\‘

[

S

L)

]
-
N
Y,
=
==
ml.__4

O O
o
>
O

[

=

] |

i .\I i <
[[

Gl
-~
i
e,
—
]
ml.__l

—h Th Th Th TR Th Th Th
.21._.
g
%é O D
q
__31._.
J
o

D D
s
Y
@
Y
e‘/e

=T

O(N)~8ops O(N)~8ops O(N)~8ops

All that remains to calculate is “glue”. There are log,(N) stages of glue
and each is O(N). So the algorithm is N log,(N).

FFT Speed up

The speed of the FFT has had a profound impact on signal processing.

—

N DFT FET speed-up

2 4 2 2.0

4 16 8 2.0

8 64 24 2.7

16 256 64 4.0

32 1,024 160 6.4

64 4,096 384 10.7

128 16,384 896 18.3
256 65,536 2,048 32.0
512 262 144 4 608 56.9
<1.024 1,048,576 10,240 102.4
2,048 4,194,304 22,528 186.2
4,096 16,777,216 49,152 341.3
8,192 67,108,864 106,496 630.2
16,384 268,435,456 229,376 1,170.3
32,768 1,073,741,824 491,520 2,184.5
65,536 4,294,967,296 1,048,576 4,096.0
131,072 17,179,869,184 2,228,224 7,710.1
262,144 68,719,476,736 4,718,592 14,563.6
524,288 274,877,906,944 0,061,472 27,5941
1,048,576 1,099,511,627,776 20,971,520 52,428.8

FFT Speed up

The small change in operation count for small N also explains why Gauss was
not so excited about the method.

N

2

A

8

16

32

64

128

256

512
1,024
2,048

4 006
8,192
16,384
32,768
65,536
131,072
262,144
524,238
1,048,576

DFT

4

16

64

256

1,024

4,006

16,384

65,536

262,144
1,048,576
4,194,304
16,777,216
67,108,864
268,435,456
1,073,741,824
4,294,967,296
17,179,869,184
08,719,476,736
274.877,906,944
1,099,511,627,776

FFT
2

8

24

64

160

384

896
2,048
4,608
10,240
22,528
49,152
106,496
229,376
491,520
1,048,576
2,228,224
4,718,502
0,061,472
20,971,520

speed-up
2.0

2.0

2.7

4.0

6.4

10.7
18.3
32.0
56.9
102.4
186.2
341.3
630.2
1,170.3
2,184.5
4,096.0
7,710.1
14,563.6
27,594.1
52,428.8

Gauss fitted 12 variables to 12

equations.

Speedup would be

12x12

12xlogo (12)

Python Code

Consider the following code to implement the FFT algorithm.

from math import e,pi

def FFT(x):

N =

len(x)

if N==1:
return x
if NY2 '= 0:

Xe
X0
Xe
Xo
X =

for k in range(N//2):
X.append((Xe [k]+exx(-2j*pixk/N)*Xo[k])/2)
for k in range(N//2):
X.append((Xe[k]-ex*x(-2j*pixk/N)*Xo[k])/2)

print (’N must be even’)

exit(1)

x[::2]

x[1::2]
FFT (xe)
FFT(x0)
[]

return X

Why are there two for loops?

Could we substitute a single loop over all N
values?

Python Code

Consider the following code to implement the FFT algorithm.

0

2

from math import e,pi f
def FFT(x):
N = len(x)
if N==1:
return x
if N%2 !'= O:
print (’N must be even’)
exit (1) fl7

~ =

4-pt

4 DFT

~

)]
]
]
6]
1

‘
.
t

~

~h
[

pb byl

~

4-pt

5 DFT

~

[
[
[
[
[
[
[
[

]
]
]
]

ij : 212]2] The lengths of the Xe and Xo lists are just N/2.

Xe = FFT(xe) The first for loop implements the "glue" for the first half of
Xo = FFT(x0) the output, the second for loop implements the glue for
X =1 the results for the second half.

for k in range(N//2):
X.append((Xe [k]+exx(-2j*pixk/N)*Xo[k])/2)
for k in range(N//2):
X.append((Xe[k]-ex*x(-2j*pixk/N)*Xo[k])/2)
return X

Python Code

We can make minor changes to this FFT algorithm to compute the iDFT.

from math import e,pi
def iFFT (X) :
N = len(X)
if N==1:
return X

if N%2 != 0: Determine the changes that are needed.

print (’N must be even’)

exit (1) 1N—1
Xe = x[::2] X[k] ==
Xo = X[1::2] N
xe =iFFT(Xe)
xo =iFFT(Xo) 21k
x = [] x[n] =) X[kle "
for k in range(N//2): k=0

X .append ((xe[k]+ex*(2j*pixk/N)*xo0[k]))
for k in range(N//2):

x .append((xe[k]-exx(2j*pixk/N)*xo[k]))
return X

Python Code

We can make minor changes to this FFT algorithm to compute the iDFT.

from math import e,pi
def iFFT(X):
N = len(X)
if N==1:
return X
if N%2 !'= O:
print (’N must be even’)
exit (1)
Xe = X[::2]
Xo = X[1::2]
xe =iFFT(Xe)
xo =1iFFT(Xo)
x = []
for k in range(N//2):

Determine the changes that are needed.

N-1
X[k = = e
=N x[n]-e
n=0

N-1

2Tk

x[n] =) X[kle N "
k=0

% . append ((xe [k]+exx(2j*pi*xk/N)*xo0[k]))

for k in range(N//2):

:{,append((:{e[k] —e%x*k (Qj*pi*k/N)*I’?D[k]))

return X

Python Code

We can make minor changes to this FFT algorithm to compute the iDFT.

from math import e,pi

def iFFT(X) : 1. negate the complex exponents
N = len(¥) 2. remove the divisions by 2
if N==1:
return X N-1 ,
e NUs 1= (- 2Tk
if N%2 != 0: fln] = Flkle’ ™ "
print (’N must be even’) e
exit (1) __V 1
Xe = ¥X[::2] 1 — -2wkn
] —)TN
Xo = X[1::2] F['l“]_i flnle A
. " n=0
e :J.FFT(KB) | | N/2—1 9k | - . N/2—1 Sk
xo =iFFT(Xo) =—- — fl2mle T N2 4TINS — fl2m+1)e ' N2
c = 0 2 N/2 ZU 2 N/ WX_:U
DFT of even n‘ambered inputs DFT of odd nEmbered inputs

for k in range(N//2):

* . append((xe[k]+exx(2j*pixk/N)*xo[k]))
for k in range(N//2):

% .append((xe[k]-exx(2j*pixk/N)*xo[k]))
return X

Python Code

Consider the following code to implement the FFT algorithm.

from math import e,pi

def FFT(x):

N =

len(x)

if N==1:
return x
if NY%2 '= 0:

Xe
X0
Xe
Xo
X =

for k in range(N//2):
X.append((Xe [k]+exx(-2j*pixk/N)*Xo[k])/2)
for k in range(N//2):
X.append((Xe[k]-ex*x(-2j*pixk/N)*Xo[k])/2)

print (’N must be even’)

exit(1)

x[::2]

x[1::2]
FFT (xe)
FFT(x0)
[]

return X

This code implements the decimation-in-time
algorithm.

Decimation in Time
There are many different "FFT" algorithms.

We have been looking at a "decimation in time" algorithm.

Gl0
x[0]o—»— L] _,,X[O]

X[2]o—»—

N/2- point

x[6]o—»— Decimation in time: inputs are
provided in a "scrambled" order.
X[l]ﬁ_p—
3lo—»— :
K3 N/2- point
x[5]o—»—] DFT
X[7]o—»—

https://cnx.org/contents/qAa90hIP@2.44:zmcmahhR@7/Decimation-in-time-DIT-Radix-2-FFT

Decimation in Frequency
There are many different "FFT" algorithms.

Here is a "decimation in frequency" algorithm.
gl0] ——o X[0]
\ 71[[1] > —»—0 X[4]

\ 7 N/2- point

——o X[6] Decimation in frequency:
outputs are provided in a
"scrambled" order.

—»—0 X[1]

[5] fT:'I-'- . —»—0 X[53
o /A -1 N/2- point]
«[6] h[2] wi DFT

—»—0 X[3]

1 >
«[7] / &:‘1[3] W o X[7]

https://cnx.org/contents/qAa90hIP@2.44:zmcmahhR@7/Decimation-in-time-DIT-Radix-2-FFT

Scrambled Inputs
Decimation in time.

S = &L, o O I

I L T e~ T
L | | A | | |

- - — - o O ™ ™

~ RN R R KR K
A A A A A A A A
O Qr e P G A

Sk | ke | A | E
Oy D D D | D | D | D .mw

1
2

f1010]

f10] = 1000
f4) = f1100

fl2

f16] = f[110]

f15] = f101]

The input samples are in bit-reversed order.

Other FFT Algorithms

A variety of other FFT algorithms have been developed to optimize
computation.

* to avoid bit-reversal
* in-place algorithms

* generalizing for lengths N not equal to a power of 2.

FFT with Other Radices

What if N is not a power of 27

Factor N, and apply an algorithm tailored to each factor.

Example: radix 3

1 N-1 2rkn
Flk| = — Zf:ﬂ,e_j N
n=0
N/3—-1 N . N/3-1
i mwk(3m) 2rk(3m41)
:% Z f[3mle N +% Z f3m+1le™? ™ §
m=0 m=0
11 N/3-1 o
= 3775 2 flmle TR
m=0
|1 N/3—-1 ok
S TS flame)e IR
‘ ' m=0
)) N/3-1
1 1 _ T i 2wkn
Fane TN X fameae

1

— —_DFT(block 0) + —e_j

3

" DFT(block 1) + —e

1% DFT (block 2)

27wk (3m+42)

The FFT as a Polynomial Representation
Think about the DF T

1 Al _,iQTrf??z.
Fli] = > fln]e’ N

n=0

as values of an underlying frequency representation F’() at points ¥ in the

complex plane, where = = o= 12m/N

F'(2¥) can be computed as a polynomial in z* with coefficients f[n].

Evaluating the polynomial yields the frequency representation F"() and
sampling £(-) at powers of the N root of unity provides the DFT.

Further study: https://www.youtube.com/watch?v=h7apO7g16V0
And Prof. Erik Demaine in 6.1220 (6.046) : https://www.youtube.com/watch?v=iTMn0OKt18tg

https://www.youtube.com/watch?v=h7apO7q16V0

The FFT as a Polynomial Representation

Separating even and odd powers of n to make two polynomials reduces
the number of computations.

Values of the even polynomial will be symmetric about = = 0, so the values
for k = N/2 to N—1 can be inferred from those for k=0 to N/2—1.

Values of the odd polynomial will be anti-symmetric about = = 0, so the
values for k = N/2 to N—1 can also be inferred from those for k = 0 to
N/2—1.

This halves the number of computations required. But we can do better.

Recursively apply this decomposition on the even and odd parts — FFT.

Further study: https://www.youtube.com/watch?v=h7apO7qg16V0
And Prof. Erik Demaine in 6.1220 (6.046) : https://www.youtube.com/watch?v=iTMn0OKt18tg

https://www.youtube.com/watch?v=h7apO7q16V0

Summary

The Fast-Fourier Transform (FFT) is an algorithm (actually a family of
algorithms) for computing the Discrete Fourier Transform (DFT).

Both elegant and useful, the FFT algorithm is arguably the most important
algorithm in modern signal processing.

e widely used in engineering and science
* elegant mathematics (as alternative representations for polynomials)

* elegant computer science (divide-and-conquer).

	Slide 1: 6.300 Signal Processing
	Slide 2: Fast Fourier Transform
	Slide 3: Historical Perspective
	Slide 4: Historical Perspective
	Slide 5: Historical Perspective
	Slide 6: FFT: Divide and Conquer
	Slide 7: FFT: Divide and Conquer
	Slide 8: Tower of Hanoi
	Slide 9: Fast Fourier Transform
	Slide 10: Computing the DFT
	Slide 11: Computing the DFT
	Slide 12: Computing the DFT
	Slide 13: Computing the DFT
	Slide 14: Computing the DFT
	Slide 15: Computing the DFT
	Slide 16: Computing the DFT
	Slide 17: FFT Algorithm
	Slide 18: FFT Algorithm
	Slide 19: FFT Algorithm
	Slide 20: Data Path
	Slide 21: Data Path
	Slide 22: Data Path
	Slide 23: Data Path
	Slide 24: Data Path
	Slide 25: Data Path
	Slide 26: Data Path
	Slide 27: FFT Speed up
	Slide 28: FFT Speed up
	Slide 29: Python Code
	Slide 30: Python Code
	Slide 31: Python Code
	Slide 32: Python Code
	Slide 33: Python Code
	Slide 34: Python Code
	Slide 35: Decimation in Time
	Slide 36: Decimation in Frequency
	Slide 37: Scrambled Inputs
	Slide 38: Other FFT Algorithms
	Slide 39: FFT with Other Radices
	Slide 40: The FFT as a Polynomial Representation
	Slide 41: The FFT as a Polynomial Representation
	Slide 42: Summary

