6.300 Signal Processing

Week 4, Lecture B: Discrete Time Fourier Transform

- Definition
- Examples
- •DT vs CT; FS vs FT
- •DT Impulse

Quiz 1: Tuesday September 30, 2-4pm 50-340

- Closed book except for one page of written notes (8.5" x 11" both sides)
- No electronic devices (No headphones, cell phones, calculators, ...)
- Coverage up to Week #3 (DTFS); no HW4, a practice quiz will be put on our website.
- Quiz review session: 9/28 1-3pm in 4-370

From Fourier Series to Fourier Transform (DT)

• Last time: use <u>continuous-time Fourier transform</u> to represent arbitrary (aperiodic) CT signals as sums of sinusoidal components

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

Analysis equation

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} \, d\omega$$

Synthesis equation

Today: generalize the **Fourier Transform** idea to **discrete-time** signals.

How can we represent an aperiodic signal as a sum of sinusoids?

Strategy: make a periodic version of x[n] by summing shifted copies:

$$x_p[n] = \sum_{m=-\infty}^{\infty} x[n-mN]$$

$$x_p[n]$$

$$\cdots$$

$$-N$$

$$-2 0 2$$

$$N$$

Since $x_p[n]$ is periodic, it has a Fourier series (which depends on N) Find Fourier series coefficients $X_p[k]$ and take the limit of $X_p[k]$ as N $\rightarrow \infty$ As N $\rightarrow \infty$, $x_p[n] \rightarrow x[n]$ and Fourier series will approach Fourier transform.

$$x_p[n] = \sum_{m=-\infty}^{\infty} x[n-mN]$$

$$\cdots \qquad x_p[n]$$

$$-N \qquad -2 \ 0 \ 2$$

Calculate the Fourier series coefficients $X_p[k]$: $X_p[k] = \frac{1}{N} \sum_{n = < N >} x_p[n] \cdot e^{-j\frac{2\pi}{N}kn}$

$$X_p[k] = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] \cdot e^{-j\frac{2\pi}{N}kn} = \frac{1}{N} + \frac{2}{N} \cos\left(\frac{2\pi k}{N}\right) + \frac{2}{N} \cos\left(\frac{4\pi k}{N}\right)$$

Plot the resulting Fourier Series coefficients for N=8.

What happens if you double the period N?

 $X_p[k]$...

There will be twice as many samples per period of the cosine functions

The red samples are at new intermediate frequencies

$$X_p[k] = \frac{1}{N} + \frac{2}{N}\cos\left(\frac{2\pi k}{N}\right) + \frac{2}{N}\cos\left(\frac{4\pi k}{N}\right)$$

let $\Omega = \frac{2\pi k}{N}$, Define a new function $X(\Omega) = N \cdot X_p[k] = 1 + 2\cos(\Omega) + 2\cos(2\Omega)$ If we consider Ω and $X(\Omega) = 1 + 2\cos(\Omega) + 2\cos(2\Omega)$ to be continuous, the discrete function $NX_p[k]$ is a sampled version of $X(\Omega)$.

As N increases, the resolution in Ω increases

We can reconstruct x[n] from $X(\Omega)$ using Riemann sums (approximating an integral by a finite sum).

$$x_p[n] = \sum_{k=\langle N \rangle} X_p[k] e^{j\frac{2\pi}{N}kn} = \frac{1}{2\pi} \sum_{k=\langle N \rangle} N X_p[k] e^{j\frac{2\pi}{N}kn} \left(\frac{2\pi}{N}\right)$$

$$x[n] = \lim_{N \to \infty} x_p[n] = \lim_{N \to \infty} \frac{1}{2\pi} \sum_{k = \langle N \rangle} N X_p[k] e^{j\frac{2\pi}{N}kn} \left(\frac{2\pi}{N}\right) = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$$

$$NX_p[k] = X(\Omega)$$

As $N \to \infty$,

- $k\Omega_0=rac{2\pi k}{N}$ becomes a continuum, $rac{2\pi k}{N}
 ightarrow\Omega.$
- The sum takes the from of an integral, $\Omega_0 = \frac{2\pi}{N} \to d\Omega$
- We obtain a spectrum of coefficients: $X(\Omega)$.

Discrete-Time Fourier Transform

$$x[n] = \lim_{N \to \infty} x_p[n] = \lim_{N \to \infty} \frac{1}{2\pi} \sum_{k = \langle N \rangle} N X_p[k] e^{j\frac{2\pi}{N}kn} \left(\frac{2\pi}{N}\right) = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$$

Since
$$X(\Omega) = N \cdot X_p[k]$$

$$X_p[k] = \frac{1}{N} \sum_{n = < N >} x[n] \cdot e^{-j\frac{2\pi}{N}kn}$$

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j\Omega n}$$

Fourier series and transforms are similar: both represent signals by their frequency content.

Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) \cdot e^{j\Omega n} d\Omega$$

$$X(\Omega) = X(\Omega + 2\pi) = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j\Omega n}$$

Synthesis equation

Analysis equation

Discrete-Time Fourier Series

$$x[n] = x[n+N] = \sum_{k=\le N>} X[k]e^{j\frac{2\pi}{N}kn}$$

$$X[k] = X[k+N] = \frac{1}{N} \sum_{n=< N>} x[n]e^{-j\Omega_0 kn}$$

Synthesis equation

$$\Omega_0 = \frac{2\pi}{N}$$

Periodic signals can be synthesized from a discrete set of harmonics. Aperiodic signals generally require all possible frequencies.

Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) \cdot e^{j\Omega n} \, d\Omega$$

Synthesis equation

$$X(\Omega) = X(\Omega + 2\pi) = \sum_{n = -\infty}^{\infty} x[n] \cdot e^{-j\Omega n}$$

Analysis equation

Discrete-Time Fourier Series

$$x[n] = x[n+N] = \sum_{k=\le N>} X[k]e^{j\frac{2\pi}{N}kn}$$

Synthesis equation

$$\Omega_0 = \frac{2\pi}{N}$$

$$X[k] = X[k+N] = \frac{1}{N} \sum_{n=< N>} x[n]e^{-j\Omega_0 kn}$$

All of the information in a periodic signal is contained in one period. The information in an aperiodic signal is spread across all time.

Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) \cdot e^{j\Omega n} d\Omega$$

$$X(\Omega) = X(\Omega + 2\pi) = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j\Omega n}$$

Synthesis equation

Analysis equation

Discrete-Time Fourier Series

$$x[n] = x[n+N] = \sum_{k=\le N>} X[k]e^{j\frac{2\pi}{N}kn}$$

$$X[k] = X[k+N] = \frac{1}{N} \sum_{n=< N>} x[n]e^{-j\Omega_0 kn}$$

Synthesis equation

$$\Omega_0 = \frac{2\pi}{N}$$

Harmonic frequencies $k\Omega_0$ are samples of continuous frequency Ω

Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) \cdot e^{j\Omega n} d\Omega$$

$$X(\Omega) = X(\Omega + 2\pi) = \sum_{n=0}^{\infty} x[n] \cdot e^{-j\Omega n}$$

Discrete-Time Fourier Series

$$x[n] = x[n+N] = \sum_{k=\langle N\rangle} X[k]e^{j\Omega_0 kn}$$

$$X[k] = X[k+N] = \frac{1}{N} \sum_{n=< N>} x[n]e^{-j\Omega_0 kn}$$

Synthesis equation

Analysis equation

Synthesis equation

$$\Omega_0 = \frac{2\pi}{N}$$

CT and DT Fourier Transforms

DT frequencies alias because adding 2π to Ω does not change $e^{j\Omega n}$. Because of aliasing, we need only integrate $d\Omega$ over a 2π interval.

Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) \cdot e^{j\Omega n} \, d\Omega$$

Synthesis equation

$$X(\Omega) = X(\Omega + 2\pi) = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j\Omega n}$$

Analysis equation

Continuous-Time Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \cdot e^{j\omega t} \, d\omega$$

Synthesis equation

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$$

Fourier Transform of a Rectangular Pulse (width 2S+1)

$$p_S[n] = \begin{cases} 1 & -S \leq N \leq S \\ 0 & \text{otherwise} \end{cases} \dots \underbrace{ \begin{matrix} p_2[n] \\ 0 \end{matrix} }_{-2 \ 0 \ 2} \dots \dots \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5} \dots \underbrace{ \begin{matrix} p_5[n] \\ 0 \end{matrix} }_{-5 \ 0 \ 5$$

Participation question for Lecture

When $\Omega = 0$, (or $2k\pi$), $P_s(\Omega) = 2S + 1$

When $\Omega \neq 0$ or $2k\pi$

$$P_{S}(\Omega) = \frac{e^{j\Omega(S + \frac{1}{2})}}{e^{j\Omega/2}} \cdot \frac{1 - e^{-j\Omega(2S + 1)}}{1 - e^{-j\Omega}} = \frac{e^{j\Omega(S + \frac{1}{2})} - e^{-j\Omega(S + \frac{1}{2})}}{e^{j\Omega/2} - e^{-j\Omega/2}} = \frac{\sin(\Omega\left(S + \frac{1}{2}\right))}{\sin(\frac{\Omega}{2})}$$

Fourier Transform of a rectangular pulse

Similar to CT, the value of $X(\Omega)$ at $\Omega = 0$ is the sum of x[n] over all time.

$$X(0) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\Omega n} = \sum_{n = -\infty}^{\infty} x[n]$$

Fourier Transform of a rectangular pulse

The value of x[0] is $1/2\pi$ times the integral of X(Ω) over $\Omega = [-\pi, \pi]$.

$$x[0] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega = \frac{1}{2\pi} \int_{2\pi} X(\Omega) d\Omega$$

Fourier Transforms of Pulses with Different Widths

As the function widens in n(time) the Fourier transform narrows in Ω (freq). How about going the other way?

In the extreme of S=0, the signal becomes a unit impulse $\delta[n]$

DT Impulse

The DT impulse is $\delta[n]$, its CT equivalent is $\delta(t)$

$$\delta[n] = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$$

The DTFT of $\delta[n]$:

$$X(\Omega) = \sum_{n=-\infty}^{\infty} \delta[n] \cdot e^{-j\Omega n} = 1$$

 $\delta[n]$ still has the "sifting property:"

$$\sum_{n=-\infty}^{\infty} \delta[n-a]f[n] = f[a]$$

In comparison to its CT counterpart $\delta(t)$:

$$\int_{-\infty}^{\infty} \delta(t)dt = \int_{0_{-}}^{0_{+}} \delta(t)dt = 1$$

$$\int_{-\infty}^{\infty} \delta(t-a)f(t)dt = f(a)$$

Special Cases

The Fourier transform of the shortest possible CT signal $f(t) = \delta(t)$ is the widest possible CT transform $F(\omega) = 1$.

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega t} = \int_{-\infty}^{\infty} \delta(t)e^{-j\omega 0} = 1$$

A similar result holds in DT.

$$F(\Omega) = \sum_{n = -\infty}^{\infty} f[n]e^{-j\Omega n} = \sum_{n = -\infty}^{\infty} \delta[n]e^{-j\Omega n} = \sum_{n = -\infty}^{\infty} \delta[n]e^{-j\Omega 0} = 1$$

Special Cases

The Fourier transform of the widest possible CT signal f(t)=1 is the narrowest possible CT transform $F(\omega)=2\pi\delta(\omega)$.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{-j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\omega) e^{-j\omega t} d\omega = \int_{-\infty}^{\infty} \delta(\omega) e^{-j0t} d\omega = 1$$

A similar result holds in DT.

$$f[n] = \frac{1}{2\pi} \int_{2\pi} F(\Omega) e^{-j\Omega n} d\Omega = \frac{1}{2\pi} \int_{2\pi} 2\pi \delta(\Omega) e^{-j\Omega n} d\Omega = \int_{2\pi} \delta(\Omega) e^{-j0n} d\Omega = 1$$

Unit Impulse in Frequency Domain

Because DT Fourier Transforms are periodic in 2π , it becomes an impulse train repeated every 2π .

$$1 \quad \stackrel{\text{DTFT}}{\iff} \quad \sum_{m=-\infty}^{\infty} 2\pi \delta(\Omega - 2\pi m)$$

This is in contrast to the CT case:

$$1 \stackrel{\text{CTFT}}{\iff} 2\pi\delta(\omega)$$

Math With Impulses

This is what we learned previously:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\omega - \omega_o) e^{j\omega t} d\omega$$

$$= \int_{-\infty}^{\infty} \delta(\omega - \omega_o) e^{j\omega_o t} d\omega$$

$$= e^{j\omega_o t} \int_{-\infty}^{\infty} \delta(\omega - \omega_o) d\omega$$

$$= e^{j\omega_o t}$$

Thus, the Fourier transform of a complex exponential is a delta function at the frequency of the complex exponential:

$$e^{j\omega_O t} \stackrel{\text{CTFT}}{\Longrightarrow} 2\pi\delta(\omega-\omega_O)$$

The impulse in frequency has infinite value at $\omega=\omega_o$ and is zero at all other frequencies.

Math With Impulses

A similar construction applies in DT.

$$f[n] = \frac{1}{2\pi} \int_{2\pi} F(\Omega) e^{j\Omega n} d\Omega$$

$$= \frac{1}{2\pi} \int_{2\pi} 2\pi \delta(\Omega - \Omega_o) e^{j\Omega n} d\Omega$$

$$= \int_{2\pi} \delta(\Omega - \Omega_o) e^{j\Omega_o n} d\Omega$$

$$= e^{j\Omega_o n} \int_{2\pi} \delta(\Omega - \Omega_o) d\Omega$$

$$= e^{j\Omega_o n}$$

Thus, the Fourier transform of a complex exponential is a delta function at the frequency of the complex exponential:

$$e^{j\Omega_O n} \stackrel{\text{DTFT}}{\Longrightarrow} 2\pi\delta(\Omega - \Omega_O)$$

The impulse in frequency shows that the transform is infinite at $\Omega = \Omega_o$ and is zero at all other frequencies.

Relations Between Fourier Series and Fourier Transforms

If a periodic signal f(t) = f(t+T) has a Fourier series representation, then it can also be represented by an equivalent Fourier transform.

$$e^{j\omega_O t} \stackrel{\text{FT}}{\Longrightarrow} 2\pi\delta(\omega - \omega_O)$$

$$f(t) = f(t+T) = \sum_{k=-\infty}^{\infty} F[k] e^{j\frac{2\pi}{T}kt} \quad \text{CTFS} \qquad \longleftrightarrow \qquad F[k]$$

$$f(t) = f(t+T) = \sum_{k=-\infty}^{\infty} F[k] e^{j\frac{2\pi}{T}kt} \quad \text{CTFT} \qquad \sum_{k=-\infty}^{\infty} 2\pi F[k] \delta \left(\omega - \frac{2\pi}{T}k\right)$$

Each term in the Fourier series is replaced by an impulse in the Fourier transform.

Relations Between Fourier Series and Fourier Transforms

Each Fourier series term is replaced by an impulse in the Fourier transform.

Relations Between Fourier Series and Fourier Transforms

Each Fourier series term is replaced by an impulse in the Fourier transform.

Periodic DT signals that have Fourier series representations also have Fourier transform representations.

Summary

Discrete-Time Fourier Transform: Fourier representation to all DT signals!

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) \cdot e^{j\Omega n} d\Omega$$

$$X(\Omega) = X(\Omega + 2\pi) = \sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j\Omega n}$$

- Very useful signals:
 - Rectangular pulse and its FT(sinc)
 - Delta function (Unit impulse) and its FT

Synthesis equation

Analysis equation

• If a periodic signal f[n] = f[n + N] has a Fourier Series representation, then it can also be represented by an equivalent Fourier Transform.