6.300 Signal Processing

Week 4, Lecture B:
Discrete Time Fourier Transform

*Definition
*Examples

DT vs CT; FSvs FT
*DT Impulse

Quiz 1: Tuesday September 30, 2-4pm 50-340

* Closed book except for one page of written notes (8.5 x 11”” both sides)

* No electronic devices (No headphones, cell phones, calculators, ...)

* Coverage up to Week #3 (DTFS); no HW4, a practice quiz will be put on our website.
* Quiz review session: 9/28 1-3pm in 4-370




From Fourier Series to Fourier Transform (DT)

e Last time: use continuous-time Fourier transform to represent
arbitrary (aperiodic) CT signals as sums of sinusoidal components

X(w) =J x(t) -e /@t dt Analysis equation

x(t) = %j X(w) e/ dw Synthesis equation

Today: generalize the Fourier Transform idea to discrete-time
signals.



Fourier Representations of Aperiodic Signals

How can we represent an aperiodic signal as a sum of sinusoids?

z[n]
ooooo 1

—2 0 2

Strategy: make a periodic version of x[n] by summing shifted copies:

0.9

Epln] = Z z[n — mN|

m=—oo

—N —2 0 2 N

Since x,[n] is periodic, it has a Fourier series (which depends on N)
Find Fourier series coefficients X,,[k] and take the limit of X;,[k] as N = e

As N - oo, x,,|n]| - x[n] and Fourier series will approach Fourier transform.



Fourier Representations of Aperiodic Signals
Epn] = Z x[n — mN|

m=—o0
| g
—N 20 2 N
. . . 1 _j2m
Calculate the Fourier series coefficients X, [k] : X[kl =+ z x,[n]-e TN "
n=<N>

n=<N>
Plot the resulting Fourier Series coefficients for N=8. X”r[k]
What happens if you double the period N? I T ooy T | T yofey T ‘I k
XplK]

There will be twice as many samples per period of the cosine functions

The red samples are at new intermediate frequencies




Fourier Representations of Aperiodic Signals

= oo (5 oo (59

let Q) = %, Define a new function X(()) = N - X,,[k] = 1+ 2 cos(Q) + 2 cos(2Q)

If we consider Q and X(2) =1+ 2cos(Q) + 2 cos(2()) to be continuous, the
discrete function NX,|k] is a sampled version of X((1).

NXplk] = X(€2)
S Y
NPyt N ™/ Q=2

As N increases, the
resolution in Q)
increases

N=16:




Fourier Representations of Aperiodic Signals

We can reconstruct x[n] from X() using Riemann sums (approximating an integral
by a finite sum).

spln] = ) Xp[kleI T = — NXp[k]e]Nkm(—W)
= 2m N
k=(N) k=(N)
zln] = lim zun] = HEm £ > NX [k]ej%k"(%) - X(Q)e?ad0
Nses ¥ N—oo 27 P N Q1 o
N=8: > e . As N — oo,
c kQy = % becomes a continuum,

2tk

—27 —T /1§ s
N=16: — - (.
\ /.\WA/“IL{V“\N / * The sum takes the from of an
| S | - 4 I Q =
—2T —T /i s

integral,(}y = %ﬂ — df)

N=382: a2z * We obtain a spectrum of coefficients:
s % X(.Q)




Discrete-Time Fourier Transform

1 2T 2m 1 .
= i = lim — 5 NX, kN (ZZ) = — | X(Q)eddQ
mjn] = Him ppind N1_133>o27rk2<N> plkle (N) T (Q)e
i 1 2T
Since  X(@) =N - X,[k] Xplkl == > xfn]-e N
n=<N>




Fourier Series and Fourier Transform

Fourier series and transforms are similar:

both represent signals by their frequency content.

Discrete-Time Fourier Transform

x[n] = L X(Q) - e/ dQ
2T )y

(0.0]

X@ =X@+2m)= ) xfn]- eI

n=—0oo

Discrete-Time Fourier Series

]2—nkn
x[n] = x[n + N] X[kle’N

X[k] = X[k +N] = % Z x[n]e~Jokn

Synthesis equation

Analysis equation

Synthesis equation

Analysis equation



Fourier Series and Fourier Transform

Periodic signals can be synthesized from a discrete set of harmonics.
Aperiodic signals generally require all possible frequencies.

Discrete-Time Fourier Transform

x[n] = L X(Q) - e’ 0
2T )y

(0.0]

X@ =X@+2m)= ) xfn]- eI

n=-—oco

Discrete-Time Fourier Series

]EEM1
x[n] = x[n + N] X[kle’N

X[k] = X[k +N] = % Z x[n]e~Jokn

Synthesis equation

Analysis equation

Synthesis equation 2T

Analysis equation




Fourier Series and Fourier Transform

All of the information in a periodic signal is contained in one period.

The information in an aperiodic signal is spread across all time.

Discrete-Time Fourier Transform

x[n] = if X(Q) - e/ q Synthesis equation
21 ),
X(Q) = X(Q + 27) = z x[n] - e~Jan Analysis equation

n=-—0oo

Discrete-Time Fourier Series

2T
B
x[n] = x[n + N] Z X[kle/n™" Synthesis equation
k=<N> ,Q, —
0
1 .
X[k] = X[k + N] = N z x[n]e~7<okn Analysis equation



Fourier Series and Fourier Transform

Harmonic frequencies k(), are samples of continuous frequency ()

Discrete-Time Fourier Transform

x[n] = L X(Q) - e/ dQ
2T )y

(0.0]

X@ =X@+2m)= ) xfn]- eI

n=-—oco

Discrete-Time Fourier Series

x[n] = x[n + N] z X[k]e 2ok
k=<N>

X[k] = X[k +N] = % Z x[n]e~Jokn

n=<N>

Synthesis equation

Analysis equation

Synthesis equation 2T

Analysis equation



CT and DT Fourier Transforms

DT frequencies alias because adding 2m to Q does not change e/,
Because of aliasing, we need only integrate dQ) over a 2mt interval.

Discrete-Time Fourier Transform

x[n] = ij X(Q) - e/ a0 Synthesis equation
2T )y
X(Q) = X(Q + 21) = z x[n] - eI Analysis equation

n=-—oco

Continuous-Time Fourier Transform

x(t) = % J X(w) e/ dw Synthesis equation

X(w) =j x(t) -e /@t dt Analysis equation




Fourier Transform of a Rectangular Pulse (width 2S+1)

p2[n]
psf] = [1 —S<N<S
S 0 otherwise = = = -©90000000000000011}110000000000000000 n n
202
oo . letm=n+Sn=m-S§ Participation question for Lecture
2S
Ps(Q) = 2 ps [n] - e/ — z e~jOn  _ ,jas z o—jam When Q = 0, (or 2km), Ps(Q) =?
n=-oo n=-S5 m=0 When Q = 0, (or 2km), Ps(Q) =25 +1

When Q) # 0 or 2km

ejQ(S+%) 1 — o—jQ(2S+1) ejﬂ(5+%) _ e—fﬂ(s%) sin(Q (S + 1))

_ . _ 2
Ps(Q) = eJQ/2 1 — e—JQ  elQ/2 _ p—jQ/2 = 0
sm(7)
P (2)
/N\
AN /=
' N N | Rl Ml |
—27 0 27



Fourier Transform of a rectangular pulse

Similar to CT, the value of X(Q) at Q = 0 is the sum of x[n] over all time.

0@
X(0) = Z [n]e " = Z z|n
n=—oo n=—o00
p2|n PQ(Q)
11‘[*"1/ B e e *ﬂ\ /
—0000000000000000 n /\\/ | ]\//—\\/ 0

—Z 2 —2 2m 2m



Fourier Transform of a rectangular pulse

The value of x[0] is 1/2m times the integral of X(Q) over Q = [-m, m].

1 . 1
z[0] = o 2 X(Q)em”dﬂ:% : X(Q)d




Fourier Transforms of Pulses with Different Widths

P (Q2)
5]
ves e \ A\ / see Sin(Q (S + %))
i —NaF aad T K s TR P Q) =
—27 2m 27 S .
: H sin(3)

As the function widens in n(time) the Fourier transform narrows in Q (freq).
How about going the other way?

In the extreme of S=0, the signal becomes a unit impulse &[n]



DT Impulse
The DT impulse is 6[n], its CT equivalent is 6(t)

1 T m=1
5] = { |
0 otherwise

The DTFT of §[n]: &[n] still has the “sifting property:”
X@= ) 8[n] e =1 S 6ln—alfn] = fla)

In comparison to its CT counterpart 6(t):
6(t) X(w)

/_o;é(t)dt:/0+ §(t)dt =1 ‘1 | 1




Special Cases

The Fourier transform of the shortest possible CT signal f(t) = d(t) is the
widest possible CT transform F(w) = 1.

Fw) = /'OC F(t)e=et = /'OO B(t)e It = /'oo ()¢90 = 1

—00 —00 — 00

A similar result holds in DT.

X2

F(Q) = Z f[n]e 7% = Z d[nle 78 = Z S[nle 7 =1

n=—0o0 n=—00 n=—oa



Special Cases

The Fourier transform of the Widest possible CT signal f(t) = 1 is the

narrowest possible CT transform F(w) = 2md(w).
I = 20 .
(1) = —/ F(w)e %t dw = —/ 21 (w)e 7t dw —/ d(w)e 7 %dw =1
27 e

A similar result holds in DT.

1 . 1 . .
n = — ,—J8n () = To(€) {_-}Q”' ) = 3_«?{]”' () =
i) = 5- / F(@)e i = — ﬂ 2m5(2)e I ﬁ 5(Q)e 40 = 1

2T

2T



Unit Impulse in Frequency Domain

Because DT Fourier Transforms are periodic in 2m, it becomes an impulse train
repeated every 2m.

1 = Z 2w (2 — 27m)

This is in contrast to the CT case:

1 & 276(w)



Math With Impulses

This is what we learned previously:

1 [

f(t) F(w)e’ dw

2T ) _ae

| B e ;

= — 276 (w—wo )e? dw
2T | _ oo

o |
= / §(w—wo)e? 7t dw

J =00

. OO
:ej“'““t/ O (w—w,)dw
J —o0
— ejwot

Thus, the Fourier transform of a complex exponential is a delta function
at the frequency of the complex exponential:

el@ot  TET 9§ (w—w,)

The impulse in frequency has infinite value at w = w, and is zero at all
other frequencies.



Math With Impulses

A similar construction applies in DT.

I '
finl = g [, F@ean

= — [ 275(0—0Q,)e! " dQ
27T ot

- / 0(2—8,)e’ ")
27

— @Jton / 5(Q—0,)dS)
2m

— fij'On

Thus, the Fourier transform of a complex exponential is a delta function
at the frequency of the complex exponential:

ejQ.On D:TgT 27T5(Q—QO)

The impulse in frequency shows that the transform is infinite at 2 = €,
and is zero at all other frequencies.



Relations Between Fourier Series and Fourier Transforms

If a periodic signal f(t) = f(t+ ") has a Fourier series representation, then
it can also be represented by an equivalent Fourier transform.

elot Ih 276 (w — wo)
= -2m CTFS
t)=f(t+T) = Flkled Tk Pk
fit)=ft+T) kz_:oo[}f’ %]
B L 2me  CTFT > o sl 2T,
F(t) = f(t+T) _kz_oop[k}@ T kz_oodﬂp[k}o(w - k.)

Each term in the Fourier series is replaced by an impulse in the Fourier
transform.



Relations Between Fourier Series and Fourier Transforms

Each Fourier series term is replaced by an impulse in the Fourier transform.

fty=">_ f(t—mT)

m=—0oco

1
0 T
FIk
(o}
o ¢ 1 T T 1 % o "
F(w) = ij: QWF[M(S(M—]{Q%)

.+TTTTT+.

0 2z
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Relations Between Fourier Series and Fourier Transforms

Each Fourier series term is replaced by an impulse in the Fourier transform.

fIn] = fI[n—N] for all integers n

—N 0 N

Periodic DT signals that have Fourier series representations also have
Fourier transform representations.



Summary

* Discrete-Time Fourier Transform: Fourier representation to all DT signals!

1 .
x[n] = 2—f X(Q) - e/ da Synthesis equation
T Jon
X(Q)=X(Q+2n) = Z x[n] - e 7 Analysis equation
n=—oo Py [n] :g]; P(Q)
. 9
* \ery useful signals: N\ N\ =

* Rectangular pulse and its FT(sinc) 202 2 0 2
e Delta function (Unit impulse) and its FT

* If a periodic signal f[n] = f[n + N] has a Fourier Series representation, then
it can also be represented by an equivalent Fourier Transform.
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