
6.300 Signal Processing
Week 4, Lecture B:

Discrete Time Fourier Transform 
•Definition
•Examples
•DT vs CT; FS vs FT
•DT Impulse

Quiz 1: Tuesday September 30, 2-4pm 50-340 
• Closed book except for one page of written notes (8.5’’ x 11’’ both sides)
• No electronic devices (No headphones, cell phones, calculators, …)
• Coverage up to Week #3 (DTFS); no HW4, a practice quiz will be put on our website.
• Quiz review session: 9/28 1-3pm in 4-370



From Fourier Series to Fourier Transform (DT)

• Last time: use continuous-time Fourier transform to represent 
arbitrary (aperiodic) CT signals as sums of sinusoidal components

Today: generalize the Fourier Transform idea to discrete-time 
signals.
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Fourier Representations of Aperiodic Signals
How can we represent an aperiodic signal as a sum of sinusoids?

Strategy: make a periodic version of 𝑥[𝑛] by summing shifted copies:

Since 𝑥𝑝[𝑛] is periodic, it has a Fourier series (which depends on N)

Find Fourier series coefficients 𝑋𝑝[𝑘] and take the limit of 𝑋𝑝[𝑘] as N → ∞

As N → ∞, 𝑥𝑝[𝑛] → 𝑥[𝑛] and Fourier series will approach Fourier transform.
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Fourier Representations of Aperiodic Signals

Calculate the Fourier series coefficients 𝑋𝑝[𝑘] :
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What happens if you double the period N?

The red samples are at new intermediate frequencies

There will be twice as many samples per period of the cosine functions

𝑋𝑝 𝑘 =
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𝑁
෍

𝑛=<𝑁>

𝑥[𝑛] ∙ 𝑒−𝑗
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Plot the resulting Fourier Series coefficients for N=8.
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Fourier Representations of Aperiodic Signals

𝑙𝑒𝑡 Ω =
2𝜋𝑘

𝑁
, Define a new function X Ω = 𝑁 ∙ 𝑋𝑝 𝑘 = 1 +  2 cos Ω + 2 cos 2Ω

If we consider Ω and X Ω = 1 +  2 cos Ω + 2 cos 2Ω  to be continuous, the 
discrete function 𝑁𝑋𝑝 𝑘  is a sampled version of X Ω .

As N increases, the 
resolution in Ω 
increases
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Fourier Representations of Aperiodic Signals
We can reconstruct 𝑥[𝑛] from X Ω  using Riemann sums (approximating an integral 
by a finite sum).

As N → ∞, 

• 𝑘Ω0 =
2𝜋𝑘

𝑁
 becomes a continuum, 

2𝜋𝑘

𝑁
→ Ω. 

• The sum takes the from of an 

integral,Ω0 =
2𝜋

𝑁
→ 𝑑Ω

• We obtain a spectrum of coefficients: 
𝑋 Ω .



Discrete-Time Fourier Transform

𝑋 Ω = ෍
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Since X Ω = 𝑁 ∙ 𝑋𝑝 𝑘 𝑋𝑝 𝑘 =
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Fourier Series and Fourier Transform

Discrete-Time Fourier Transform

Synthesis equation

Analysis equation
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Fourier series and transforms are similar: 
both represent signals by their frequency content.
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Discrete-Time Fourier Series
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Fourier Series and Fourier Transform
Periodic signals can be synthesized from a discrete set of harmonics. 
Aperiodic signals generally require all possible frequencies. 

Discrete-Time Fourier Transform

Synthesis equation

Analysis equation
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Fourier Series and Fourier Transform
All of the information in a periodic signal is contained in one period. 
The information in an aperiodic signal is spread across all time. 

Discrete-Time Fourier Transform

Synthesis equation

Analysis equation
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Fourier Series and Fourier Transform
Harmonic frequencies 𝑘Ω0 are samples of continuous frequency Ω

Discrete-Time Fourier Transform

Synthesis equation

Analysis equation
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CT and DT Fourier Transforms
DT frequencies alias because adding 2π to Ω does not change 𝑒𝑗Ω𝑛.
Because of aliasing, we need only integrate dΩ over a 2π interval.

Discrete-Time Fourier Transform
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Analysis equation

𝑥[𝑛] =
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න
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Continuous-Time Fourier Transform

Synthesis equation
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Fourier Transform of a Rectangular Pulse (width 2S+1)

𝑃𝑆(Ω)  = ෍

𝑛=−∞

∞

𝑝𝑆 [𝑛] ∙ 𝑒−𝑗Ω𝑛 = ෍

𝑛=−𝑆

𝑆

𝑒−𝑗Ω𝑛
= 𝑒𝑗Ω𝑆 ෍
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2𝑆
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𝑃𝑆(Ω) =
𝑒𝑗Ω(𝑆+

1
2)

𝑒𝑗Ω/2
∙

1 − 𝑒−𝑗Ω(2𝑆+1)

1 − 𝑒−𝑗Ω =
𝑒𝑗Ω(𝑆+

1
2) − 𝑒−𝑗Ω(𝑆+

1
2)

𝑒𝑗Ω/2 − 𝑒−𝑗Ω/2 =
sin(Ω 𝑆 +

1
2

)

sin(
Ω
2

)

When Ω ≠ 0 𝑜𝑟 2𝑘𝜋

When Ω = 0, 𝑜𝑟 2𝑘𝜋 , 𝑃𝑆 Ω =?

1 1

𝑙𝑒𝑡 𝑚 = 𝑛 + 𝑆, 𝑛 = 𝑚 − 𝑆 Participation question for Lecture

When Ω = 0, (𝑜𝑟 2𝑘𝜋), 𝑃𝑆 Ω = 2𝑆 + 1



Fourier Transform of a rectangular pulse

Similar to CT, the value of X(Ω) at Ω = 0 is the sum of x[n] over all time.



Fourier Transform of a rectangular pulse

The value of x[0] is 1/2π times the integral of X(Ω) over Ω = [−π, π].



Fourier Transforms of Pulses with Different Widths

As the function widens in n(time) the Fourier transform narrows in Ω (freq).

How about going the other way?

𝑃𝑆(Ω) =
sin(Ω 𝑆 +

1
2

)

sin(
Ω
2

)

In the extreme of S=0, the signal becomes a unit impulse δ[n] 



DT Impulse
The DT impulse is δ[n], its CT equivalent is δ(t) 

δ[n] still has the “sifting property:”

𝛿(𝑡) 𝑋 𝜔

The DTFT of δ[n]:

𝑋 Ω = ෍

𝑛=−∞

∞

𝛿[𝑛] ∙ 𝑒−𝑗Ω𝑛 = 1

In comparison to its CT counterpart δ(t):

δ[n]

0



Special Cases



Special Cases



Unit Impulse in Frequency Domain
Because DT Fourier Transforms are periodic in 2π, it becomes an impulse train 
repeated every 2π.

This is in contrast to the CT case:



Math With Impulses

This is what we learned previously:



Math With Impulses



Relations Between Fourier Series and Fourier Transforms



Relations Between Fourier Series and Fourier Transforms



Relations Between Fourier Series and Fourier Transforms

k goes from –N/2 to N/2

<N>



Summary

• Discrete-Time Fourier Transform: Fourier representation to all DT signals! 

• Very useful signals:
• Rectangular pulse and its FT(sinc)
• Delta function (Unit impulse) and its FT

Synthesis equation

Analysis equation

𝑥[𝑛] =
1

2𝜋
න

2𝜋

𝑋(Ω) ∙ 𝑒𝑗Ω𝑛 𝑑Ω

𝑋 Ω = 𝑋(Ω + 2𝜋) = ෍

𝑛=−∞

∞

𝑥[𝑛] ∙ 𝑒−𝑗Ω𝑛

δ[n]
X(Ω)=1

𝐷𝑇𝐹𝑇

Ω

𝐷𝑇𝐹𝑇

• If a periodic signal 𝑓[𝑛]  = 𝑓[𝑛 + 𝑁] has a Fourier Series representation, then 
it can also be represented by an equivalent Fourier Transform.  
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