6.300 Signal Processing

Week 2, Lecture B:
Fourier Series — Complex Exponential Form

 Complex numbers
* Fourier series: Sinusoids to complex exponentials
* Delay property of Fourier series

Lecture slides are available on CATSOOP:
https://sigproc.mit.edu/fall25



Fourier Series

Previously: Representing periodic signals as weighted sums of sinusoids.

Synthesis Equation

= -~ 2T
t = C ’L. COS ]{: ‘Ot d . S1 ]f ‘Ot h ‘O -
f(t) (o—l—kzl(kwb(w )—l—; e sin(kw,t)  where w T

Analysis Equations

co = % / f(t)dt Q1: How to go from sinusoids to complex numbers?
ST Q2: Is it really simpler?

5 ¢
CL = —/ f(t) cos(kwyt) dt
I Jr

dy. = 2 / f(t) sin(kwyt) dt
I Jr

Today: Simplifying the math with complex numbers.



Simplifying Math By Using Complex Numbers — How?

Our biggest simplification comes from Euler’s formula, which relates complex
exponentials to trigonometric functions (Leonhard Euler, 1748).

e)? = cosf + jsin6

where 7 = +/—1.

Richard Feynman called this “the most remarkable formula in mathematics.”



Geometric Interpretation of Euler’s Formula

e’ = cosf + jsin6

Rectangular form Polar form
_ j6
Im Im c =re’
¢c=a+7b e/’ = cosf + jsinf
B — )0
cC =re Sa
F =
| wn
: . Re 0 Re

b
r =+a? + b? 6 = tan_l(a)

a = rcosé b = rsin@

 Complex numbers are two-dimensional, and can be described as points in the complex plane.
* Two ways of describing a unit vector at angle 6 in the complex plane: rectangular and polar form.



Ad d |t|0 n Q: which way is easier? Rectangular or Polar?

Addition: the real part of a sum is the sum of the real parts, and
the imaginary part of a sum is the sum of the imaginary parts.

Let ¢; and co represent complex numbers:

cr=a;+jh
co = as + jbo
Then

c1 4 co = (a1 + jb1) + (a2 + jb2) = (a1+a2) + j(b1+b2)

Rules for adding complex numbers are same as those for adding vectors.




M u Iti plication Q: which way is easier? Rectangular or Polar?

Multiplication is more complicated.

Let ¢; and co represent complex numbers:

c1=a;+jh
co = ag + jbo
Then

C1XCo = (aﬁ—ﬂn) X (ag—l—jbz)
= a1 Xaz + a1 X jba + jbi xas + jbi X jbo
= (a1as — bybo) + j(arbs + byas)

Although the rules of algebra still apply, the result is complicated:
e the real part of a product is NO'T the product of the real parts, and
e the imaginary part is NOT the product of the imaginary parts.



Multiplication: Polar form

The magnitude of the product of complex numbers is the product of their
magnitudes. The angle of a product is the sum of the angles.

Im

1

Re

01405

71 X195

r1e%1 x roel?2 = ri(cos @1 + jsinéy) x ro(cos by + jsinby)

= 1r172(cos 01 cos o — sin B sin O + j cos O1 sin By + j sin 67 cos 05)

~

cos(01+69) jsin(61+69)
— pyroed(01102)



Multiplication of Complex Numbers

E.g. Multiply a complex number by j. let’s first try rectangular form:

c=a-+jb
je=ja—>b

jc ~ a

eJ2m = 1; el = —1; ¢JT/2 = J;

Q: Is there an easier way to do it? Multiplying by j rotates an arbitrary complex number by /2.



Check yourself

Let ¢ represent the complex number shown by a filled dot in the

complex plane below, where the circle has radius 1.
Im
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Which if any of the following figures shows the value of jc¢?
Which if any of the following figures shows the value of Im(¢)?
Which if any of the following figures shows the value of l/c?
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How to go from trig form to CE form for CTFS

Substitute complex exponentials for trigonometric functions.

f(t) =co+ Z (Ck cos(kwyt) + dy, sin(kwot))
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3
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f(ty=" > ape™°" where a, =1 c
k=—oc0 s(cr+jd )

The trig form of the Fourier series (top of page) has an equivalent

with complex exponentials (red).

if £ >0
if k=20
if k<0

Let’s try it!
el? = cos6 + jsin6
e 1% = cosh — jsind
el® + /8
cosf =
2

. el —e—J0 .o

sinf = — )

form

—e

2



Meaning for Negative k

The complex exponential form of the series has positive and negative k's.
>0

f(t) = Z ay, e kwot

k=—o00

Only positive values of k£ are used in the trig form.
>0 o0
f(t) =co+ Z g cos(kwot) + Z dy. sin(kw,t)
k=1 k=1
Q: Why? What does negative k mean?

The negative k's are required by Euler's formula.
/R0t — cos(kwyt) + j sin(kw,t)
cos(kw,t) = Refe/r ot} = 3 (ed’kwt + e_jku’ot)

g 1 o T
sin(kw,t) = Im{ejku’ot} =5 (ejku’ot —e Jk“"ot)
J
The negative k£ do not indicate negative frequencies. They are the mathe-
matical result of representing sinusoids with complex exponentials.



Simplifying Math By Using Complex Numbers

Euler's formula allows us to represent both sine and cosine basis functions
with a single complex exponential:

. R ‘ Jkwot
fy= (C"‘ cos(hwol) + dj sin(kwol ) D ke Q: What’s the difference?

cos(0t)

cos(2w,t) cos(wet)

Real-valued basis functions

Complex basis functions

sin(0t)
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Potentially simpler math
* Cosine and Sine all-in-one

* No need to memorize trig identities

Negative k



Fourier Series directly from complex exponential form

Assume that f(t) is periodic in T" and is composed of a weighted sum of
harmonically related complex exponentials.

f(ty=ft+T)= Z apelwokt

k=—00

We can “sift” out the component at (w, by multiplying both sides by e Jlwol
and integrating over a period.

/. f(t)(fi_jwoltdt :/ Z a. €jwokf —onlfdt Z ak/ Jwo(k— lfdt
T T

k=— k=—o0
B { Ta, ifl=%k
0 otherwise
Solving for a; provides an explicit formula for the coefficients:
1 [ : 2T
ap = — He dwok gt where w, = — .
o= [ 1 , o=



Orthogonal decompositions

Vector representation: let r represent a vector with components a and b

in the = and y directions, respectively.

a=17T-21

. (“analysis” equations)
b=r1-q
r=ar + by (“synthesis” equation)

Fourier series: let f(t) represent a signal with harmonic components

: 2T -2
aog, ai, ..., ap for harmonics /% ¢7 Tt .., el TF respectively.
= —/ f(t) e/ Tktdt (“analysis” equation)
27T
f)=ft+T)= Z ape’ T (“synthesis” equation)

k=—00



Fourier analysis of a square wave

We previously used trig functions to find the Fourier series for f(t) below:

ft) = f(t+2)

1 -
t
—2 —1 0 1 2
1 -2
——/f §/f(t)dt:—
Jo
! sin(krt) |
Cl=m / [ (1) cos(kwot) dt = / cos(kmt)dt = =0 for k=1,2,3,...
T Jo J0 km 0

cos(knt)
km

1 5 ‘
:{E k=1,3,5,..
0 0 otherwise

2 [ 1
dp. =— / f(t) sin(kw,t) dt:/ sin(krt)dt =—
0 Jo

1 o0
= 5 Z — sin(kmt)



Fourier analysis of a square wave

Now try complex exponentials.

£(t) = F(t+2)




Fourier analysis of a square wave

Now try complex exponentials.

F() = F(t+2)

—2 —1 0 1 2

1

L I B i R L

ak:?/f(?f)e Ik OtdtZE/ e " tdt:i[ jk‘ﬂ'] —{0/0
JT J 0 o 0

0
1 [ 1

1) = E edkwot — ki
f( ) are€ 5 + E —jkﬂ'e
k—=—o00 P
k odd

Trig functions have been replaced with exponential functions.

if £ is odd
if =20

otherwise!



Fourier analysis of a square wave

Now try complex exponentials.

f(t) = f(t+2)

—2 —1 0 1 2

1/ Lo | [ogkmiql == if k is odd
a = Lf(t)e‘kaotdt — 5/ eIkl gt = 5 [ . ] =4 0/0 ifk=0
. J0

—JkT |,
0 otherwise
1 s
= — t)dt = —
ao = /T f(t)
E a kot — l + EOO kTt l EOO —blll (kmt)
2 jkm 2
k=—o00 k=—o0 k=1
k odd k odd

Same answer we obtained with trig functions.



Continuous Time Fourier series (CTFS)

Comparison of trigonometric and complex exponential forms.

Complex Exponential Form Or more often:
"kwo g e 2kt
f&)=ft+T)= ) ape/™ z(t) =z(t+T)= > _ X[kl¢ v
k=—o00 b — oo
— _ka(ﬂtdt 1 - 27kt
/ 1) g / (eI 5 gy
T Jr

Trigonometric Form

f(t) = t—l—T)-g—I—chcm (kwot) —I—debm kwot)

k=1 k=1
et [ 0

ck:T/ft cos(kwot)dt; k=1,2,3,...
T

9 r
di = T / F(t)sin(kwot)dt; k=1,2,3,...



Is the complex exponential form actually easier?

Let’s consider the effect of a half-period shift on the Fourier coefficients of
the trig form vs CE form: Participation question for Lecture

- N

Assume that f(t) is periodic in time with period 7"

ft) = f+T).
Let g(t) represent a version of f(t) shifted by half a period:

g(t) = f(t=1/2).

How many of the following statements correctly describe the
effect of this shift on the Fourier series coefficients.

e cosine coefficients ¢, are negated

e sine coefficients d; are negated

e odd-numbered coefficients ¢;,d;,c3,ds, ... are negated

e sine and cosine coefficients are swapped: ¢, — di. and d — ¢y




What is the effect of shifting time

Let ¢ and ¢, represent the cosine coefficients of f(¢) and g(t) respectively.
2 [t
L= —/ f(t) cos(kw,t) dt
— —/ ) cos(kw,t) dt
- ?/0 [(t=T/2) cos(kwot) dt | g(t) = f(i=T/2)
2 [
— T/ f(s)cos(kwy(s+1/2))ds | s=t=T/2
0
o [T
= ?/ f(s) cos(kwos+kw,1'/2)ds | distribute kw, over sum
0
2 o
= — f(s) cos(kwos+km) ds | wo =27/ T
0

—/ f(s)cos(kw,s)(— )k ds | cos(a+b) = cosacosb —sinasinb

| pull (=1)* outside integral



What is the effect of shifting time

Let di, and d), represent the sine coefficients of f(¢) and g(t) respectively.

T
dr= E/ f(t)sin(kw,t) dt

— T/o f(t=T/2) sin(kw,t) dt | g(t) = f(t=T/2)
_2 [ in(k T/2))ds | s=t-T/2
— T/o f(s) sin(kw,(s+ S CS
o T
= —/ f(s)sin(kw,s+kw,T'/2)ds | distribute kw, over sum
— _/ f(s)sin(kwos+km) ds | wo =2/ T

- _/ f(s)sin(kwys)(—1)"ds | sin(a+b) =sinacosb + cosasinb
kdk

| pull (—1)* outside integral



Alternative (more intuitive) approach

Shifting f( ) shifts the underlying basis functions of it Fourier expansion.

f(t=T/2) Z(k cos (kwo(t=T/2)) —I—debm (kwo(t—T/2))

k=0 —
cosine basis functions delayed half a period
=
L—
7 t t
wo Wo

/N ; ,

[, /\/\/\
/\/\/\;

Half-period shift inverts odd harmonics. No effect on even harmonics.

cos(3wet) cos(2wet) cos(wet)



Is the complex exponential form actually easier?

Let’s consider the effect of a half-period shift on the Fourier coefficients of
the trig form vs CE form:

- N

Assume that f(t) is periodic in time with period 7"

ft) = f+T).
Let g(t) represent a version of f(t) shifted by half a period:

g(t) = f(t=1/2).

How many of the following statements correctly describe the
effect of this shift on the Fourier series coefficients.

e cosine coefficients ¢, are negated

e sine coefficients d; are negated

e odd-numbered coefficients ¢;,d;,c3,ds, ... are negated

e sine and cosine coefficients are swapped: ¢, — di. and d — ¢y




Quarter-period shift

Shifting by T'/4 is even more complicated.

oo

ft—="T/4) = ch cos (kw,(

k=0

cosine basis functions

k=1

t—T/4))+ > dysin (kwo(t — T/4))

delayed one fourth period

cos(3w,t) cos(2w,t) cos(wet) cos(0t)
S/

cos(wot) — sin(wpt);

cos(2w,t) — — cos(2w,t);

<

cos(3wot) — — sin(3w,t)



Eighth-period shift

Let ¢, and dj represent the Fourier series coefficients for f(t)

f@)=ft+T)=co+ Z ck cos(kw,t) + Z dy. sin(kw,t)

k=1 k=1
and ¢/ and d] represent those for an eighth-period delay.

gt)=f(t—=T/8)=co+ Z &' cos(kwyt) + Z dy sin(kw,t)

r Ch if k=0,8,16,24,...
(e +dy)  ifk=1,9,17,25,...
o if k=2,10,18,26,...
. 2(—cp+dy) ifk=3,11,19,27, ... .
% = ¢k if k= 4,12,20,28, . .. S
Y2(—¢ —dy) if k=5,13,21,29, ...
—dy, if k= 6,14,22,30,...
(e —dy)  ifk=7,1523,31,...



Properties of CTFS: Time Shift

* Consider y(t) = x(t — ty) , where x is periodic in T. What are the
CTFS coefficients Y [k], in terms of X|k]?

1 2kt 1 2kt - —
B j & B SRk let u=t-—t,,
Vi =5 [ ve T @t = o [ st t)e Fa e
dt = du

27rk:(u—|—t0)
s / du

onku - 27ktg
:—/w(u)ejTedeu
4" ST

271'th 1 _ . 2mku 2Tkt
J T/a?(fu)e]T dit =& T X|[k|
¢

Each coefficient Y [k] in the series for y(t) is a constant e /*®oto times the
corresponding coefficient X|k] in the series for x(t).




Real-valued periodic signal

If £(t) is real valued periodic signal:

21kt

F[k] f f(e T dt F[—

21wkt

k= jT FOe T dt

2Tkt

1 _ jalkt
:Tfr f()e 7T dt

= Flk]

If £(t) is real valued periodic signal, F[k]

= F*[~k]




How to go from trig form to CE form for CTFS

Substitute complex exponentials for trigonometric functions.

f(t) =co+ Z (Ck cos(kwyt) + dy, sin(kwot))
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The trig form of the Fourier series (top of page) has an equivalent

with complex exponentials (red).

if £ >0
if k=20
if k<0

Let’s try it!
el? = cos6 + jsin6
e 1% = cosh — jsind
el® + /8
cosf =
2

. el —e—J0 .o

sinf = — )

form
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Properties of CTFS: Time flip(reversal)

* Consider y(t) = x(—t), where x(t) is periodic in 7. What are the
CTFS coefficients Y [k], in terms of X|k]?

First, y(t) must also be periodicin T

x(0) = 2 Xlkle” T y(t) =x(=1) = Z XIS T = Y XM T
k=—o0
e = 2 t - 2mmt
y(t) =x(—t) = z X[— = z X[—m]e] T

Since we know

y(t) = Z Y[m . ——>  Y[k] = X[-k]

If y(t) = x(—t),Y[k] = X[—k]




Properties of CTFS: Time Derivative

* Consider y(t) = %x(t) , Wwhere x(t) and y(t) are periodic in T. What
are the CTFS coefficients Y|k], in terms of X|k]?

Start with the synthesis equation: x(t) = Z X[]{;]ejz%kt

k=—00

Then, from the definition of y(:), we have:

i - .27 - 21kt
y(t)zi‘(t):d% ( > X[k}ej%“) = (j?){[k}) I = Z Y[k]e’zT

k:—oo k?I—OO

From this form, we can see that Y[k] = j2ZZE X [k].



Summary

e Complex numbers

 Complex exponentials and their relation to sinusoids

* Analysis and synthesis with complex exponentials

e Various properties of CTFS (using complex exponential form)

For recitation:

* If the 1st letter of your kerberos is in the range of a-j, please go to:
4-370

* Otherwise, please go to: 4-237
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