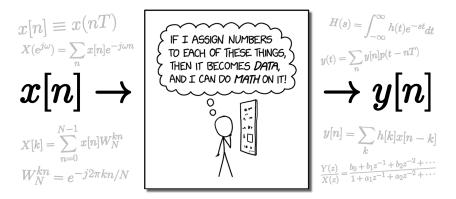
6.300

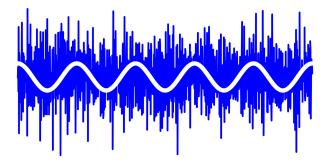

October 29, 2024

Music Information Retrieval

- Representations of Music
- Representations of Music Signals
- Features of Music Signals
- Applications
- Signal Processing at MIT

Signal processing techniques enable us to **extract features** from audio signals to understand **higher-level musical meaning**.

Signal Processing



modified from xkcd.com

Signal Processing

Signals convey information.

That information may not be in the most readily analyzed or manipulated form — hence the need for further **processing**.

Signal Processing

Many **applications** of signal processing:

- audio (speech, music) processing
- imaging and image processing
- radar signal processing
- communication systems
- data compression
- (and many more applications)

Signal processing is the art and science of **extracting information from signals** (or encoding information within signals)

Music Representations

More-or-less familiar representations of music:

- audio recording
- musical score
- sheet music symbolic representation piano roll, MIDI

WAV, MP3,

Music and Signal Processing

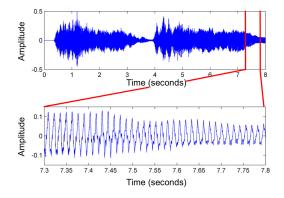
Audio recordings of music common in the digital age

- samples of time-pressure waveform
- higher-level musical meaning not explicit

Two signal processing objectives:

analysis extract information from signalsynthesis generate signal with information

Today, focus on analysis of audio music signals — music information retrieval (MIR)

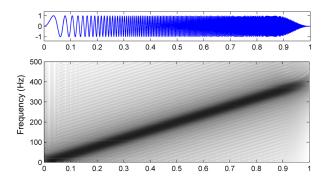

MIR: Given an **audio recording** of music, extract higher-level **musical meaning**

Representations of music signals we'll focus on:

- waveform
- spectrogram
- chromagram

time-pressure signal time-frequency plot time-pitch plot

Representations of music signals we'll focus on:


1D

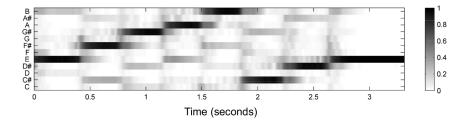
2D

2D

- waveform
- spectrogram
- chromagram

time-pressure signal time-frequency plot time-pitch plot

Representations of music signals we'll focus on:


1D

2D

2D

- waveform
- spectrogram
- chromagram

time-pressure signal time-frequency plot time-pitch plot

Sort of like a spectrogram / sheet music hybrid ...

Representations of music signals we'll focus on:

- waveform 1D
- spectrogram 2D
- chromagram 2D

time-pressure signal time-frequency plot time-pitch plot

Each signal representation may emphasize some **musical features** and downplay others.

• Common thread in signal processing: Use the signal representation(s) best suited for the job!

Analyze music from several views: waveform, spectrogram, or chromagram

The Sound of Music

To start, we better understand music just a bit. What is music, really?

The Sound of Music

What constitutes music is **subjective**, but lots of music shares **common properties**.

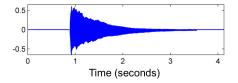
Features and Applications

Some common features of music:

- pitch and harmony
- tempo, beat, and rhythm
- timbre and instrumentation
- polyphony

middle C tap along tone color many voices

- A few applications these features enable:
 - beat tracking
 - audio recognition
 - music synchronization

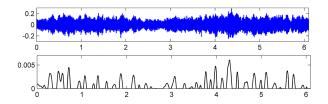

Extract musical features from music signals. Features enable further music analysis.

Beats

Start with analyzing waveforms for musical features.

Beats correspond to sudden, large changes in air pressure — which waveforms represent.

- represent "unit time" for music signals
- may enhance downstream processing tasks

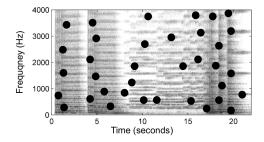


Beats: Abrupt changes in air pressure.

Beats

Generate an energy novelty curve.

- half-wave rectification
- finite differences
- thresholding and peak-finding



Beats correspond to peaks of an **energy novelty curve**.

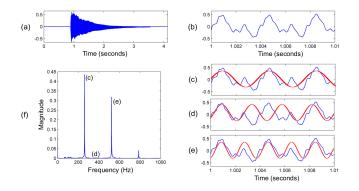
Audio Recognition

Need a robust method to **identify music** given (potentially very noisy) audio recordings ...

- compute spectrogram and determine peaks
- create constellation map
- use efficient hashing scheme
- compare with constellation maps in database

Audio Recognition

Shazam existed before smartphones did! Like today, you held your phone up to the music:



(Well, you had to dial in ...)

Periodicity and Pitch

Wind and string musical instruments produce **quasi-periodic waveforms**.

- sum of harmonically-related sinusoids
- fundamental frequency determines pitch

Periodicity and Pitch

Octave equivalence: Frequencies that are half or double the fundamental are perceived as the same pitch as the fundamental!

С	16.35 Hz	2 × 8.18 Hz
C	32.70 Hz	2×16.35 Hz
С	65.41 Hz	2×32.70 Hz
С	130.81 Hz	2 × 65.41 Hz
С	261.63 Hz	2 × 130.81 Hz
С	523.25 Hz	2 × 261.63 Hz

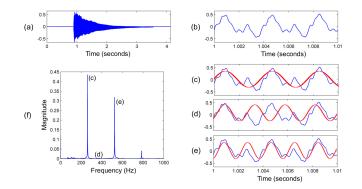
Periodicity and Pitch

Equal-tempered scale: Divide each octave into 12 equally-spaced pitch classes.

- next pitch is $2^{\frac{1}{12}}$ times higher in frequency
- refer to octave degree as pitch's chroma
- must also specify octave

C4 (Middle C)	261.63 Hz
E4	329.63 Hz
G4	392.00 Hz
A4 (Concert A)	440.00 Hz
C5	523.25 Hz

Pitch and Harmony

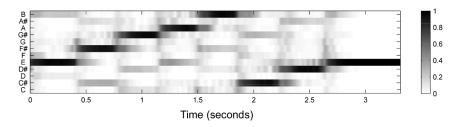

Play several pitches at once to produce **harmony**.

- A harmony with three or more pitches is a **chord**.
 - Chords that "sound pleasant" (consonant) involve pitches with simple frequency ratios, indicating **many shared harmonics**.

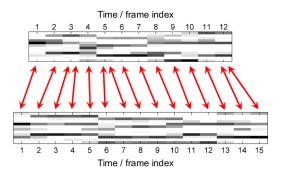
Combining pitches with **many shared** harmonics produces consonant harmony.

Frequency and Pitch

The **fundamental frequency** of a waveform determines the **pitch** one perceives. A **note** is specified by **chroma** and **octave**.


Frequency/Pitch vs. Time

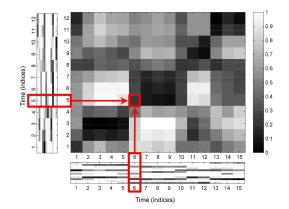
Spectrograms display the magnitude-squablue (power) frequency spectrum of a signal over time.


• pitch frequencies increase exponentially

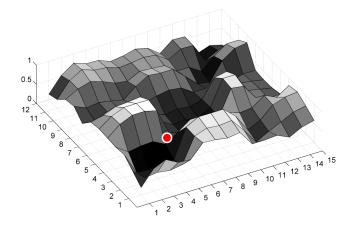
Chromagrams: Similar to spectrograms, but display the pitch (chroma) of a signal over time.

• condense spectrum into a single octave

Temporal alignment: Synchronize two variations of the same underlying song.


Match up sections in "cover songs" to the original.

Temporal alignment: Synchronize two variations of the same underlying song.


- Compare similarity between time-frames of each song (columns of each chromagram) to produce a **cost matrix**.
- Determine **minimum-cost path** through cost matrix, from start to end of song.
- Use minimum-cost path to determine correspondence between songs.

Sifting out features via measuring similarity

Compare similarity between time-frames of each song (columns of each chromagram) to produce a **cost matrix**.

"Walk through the valley" of the cost matrix!

... and that's not all!

Many more methods and applications:

- audio decomposition (source separation)
- audio thumbnailing
- chord recognition
- instrument recognition
- onset detection
- pitch estimation (monophony, polyphony)
- structure analysis (ABAB, ABBA, ...)
- tempo estimation

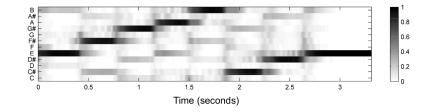
Interested in music signal processing? 6.300: Signal Processing (pre-req for \downarrow) 6.302: Fundamentals of Music Processing

Further Reading

Müller, Meinard. Fundamentals of Music Processing: Using Python and Jupyter Notebooks. Springer, 2021.

- available to MIT affiliates online for free
- official course textbook of 6.302
- FMP Notebooks provide examples in Python

Textbook


link.springer.com/book/10.1007/978-3-030-69808-9

FMP Notebooks

audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html

Music Information Retrieval

Signal processing techniques enable us to **extract features** from audio signals to understand **higher-level musical meaning**.

Signal Processing at MIT

6.300	Signal Processing (D. Freeman)	FA/SP
6.301	Signals, Systems, and Inference (Zheng)	SP
6.302	Fundamentals of Music Processing (Egozy)	FA
6.310	Dynamical Systems and Control (White)	FA/SP
6.700	Discrete-Time Signal Processing (Ward)	FA
6.701	Digital Image Processing (Rachlin, Lim)	SP
6.741	Digital Communication (Chan, Médard)	FA
6.862	Spoken Language Processing (Glass)	SP
6.880	Biomedical Signal and Image Processing	SP
6.C27	Computational Imaging (Barbastathis, You)	FA
ES.S31	ESG Special Seminar (Roesler)	FA/IAP

Al Oppenheim: "There will always be **signals**, and they will always need to be **processed**."