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Music Information Retrieval
• Representations of Music
• Representations of Music Signals
• Features of Music Signals
• Applications
• Signal Processing at MIT

Signal processing techniques enable us to
extract features from audio signals to
understand higher-level musical meaning.
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Signal Processing

Signals convey information.

That information may not be in the most readily
analyzed or manipulated form — hence the need for
further processing.



Signal Processing

Many applications of signal processing:

• audio (speech, music) processing
• imaging and image processing
• radar signal processing
• communication systems
• data compression
• (and many more applications)

Signal processing is the art and science of
extracting information from signals
(or encoding information within signals)



Music Representations

More-or-less familiar representations of music:

• audio recording WAV, MP3,
• musical score sheet music
• symbolic representation piano roll, MIDI



Music and Signal Processing

Audio recordings of music common in the digital age

• samples of time-pressure waveform
• higher-level musical meaning not explicit

Two signal processing objectives:

• analysis extract information from signal
• synthesis generate signal with information

Today, focus on analysis of audio music signals
— music information retrieval (MIR)

MIR: Given an audio recording of music,
extract higher-level musical meaning



Signal Representations

Representations of music signals we’ll focus on:

• waveform 1D time-pressure signal
• spectrogram 2D time-frequency plot
• chromagram 2D time-pitch plot
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Signal Representations

Representations of music signals we’ll focus on:

• waveform 1D time-pressure signal
• spectrogram 2D time-frequency plot
• chromagram 2D time-pitch plot

Sort of like a spectrogram / sheet music hybrid . . .



Signal Representations

Representations of music signals we’ll focus on:

• waveform 1D time-pressure signal
• spectrogram 2D time-frequency plot
• chromagram 2D time-pitch plot

Each signal representation may emphasize some
musical features and downplay others.

• Common thread in signal processing: Use the
signal representation(s) best suited for the job!

Analyze music from several views: waveform,
spectrogram, or chromagram



The Sound of Music

To start, we better understand music just a bit.
What is music, really?



The Sound of Music

What constitutes music is subjective, but
lots of music shares common properties.



Features and Applications

Some common features of music:

• pitch and harmony middle C
• tempo, beat, and rhythm tap along
• timbre and instrumentation tone color
• polyphony many voices

A few applications these features enable:

• beat tracking
• audio recognition
• music synchronization

Extract musical features from music
signals. Features enable further music analysis.



Beats

Start with analyzing waveforms for musical features.

Beats correspond to sudden, large changes in air
pressure — which waveforms represent.

• represent “unit time” for music signals
• may enhance downstream processing tasks

Beats: Abrupt changes in air pressure.



Beats

Generate an energy novelty curve.

• half-wave rectification
• finite differences
• thresholding and peak-finding

Beats correspond to peaks of an
energy novelty curve.



Audio Recognition

Need a robust method to identify music given
(potentially very noisy) audio recordings . . .

• compute spectrogram and determine peaks
• create constellation map
• use efficient hashing scheme
• compare with constellation maps in database



Audio Recognition

Shazam existed before smartphones did!

Like today, you held your phone up to the music:

(Well, you had to dial in . . . )



Periodicity and Pitch

Wind and string musical instruments produce
quasi-periodic waveforms.

• sum of harmonically-related sinusoids
• fundamental frequency determines pitch



Periodicity and Pitch

Octave equivalence: Frequencies that are half
or double the fundamental are perceived as the
same pitch as the fundamental!

C 16.35 Hz 2 × 8.18 Hz

C 32.70 Hz 2 × 16.35 Hz

C 65.41 Hz 2 × 32.70 Hz

C 130.81 Hz 2 × 65.41 Hz

C 261.63 Hz 2 × 130.81 Hz

C 523.25 Hz 2 × 261.63 Hz



Periodicity and Pitch

Equal-tempered scale: Divide each octave into
12 equally-spaced pitch classes.

• next pitch is 2
1
12 times higher in frequency

• refer to octave degree as pitch’s chroma
• must also specify octave

C4 (Middle C) 261.63 Hz

E4 329.63 Hz

G4 392.00 Hz

A4 (Concert A) 440.00 Hz

C5 523.25 Hz



Pitch and Harmony

Play several pitches at once to produce harmony.

A harmony with three or more pitches is a chord.

• Chords that “sound pleasant” (consonant)
involve pitches with simple frequency ratios,
indicating many shared harmonics.

Combining pitches with many shared
harmonics produces consonant harmony.



Frequency and Pitch

The fundamental frequency of a waveform
determines the pitch one perceives. A
note is specified by chroma and octave.



Frequency/Pitch vs. Time

Spectrograms display the magnitude-squablue
(power) frequency spectrum of a signal over time.

• pitch frequencies increase exponentially

Chromagrams: Similar to spectrograms, but
display the pitch (chroma) of a signal over time.

• condense spectrum into a single octave



Temporal Alignment

Temporal alignment: Synchronize two
variations of the same underlying song.

Match up sections in “cover songs” to the original.



Temporal Alignment

Temporal alignment: Synchronize two
variations of the same underlying song.

• Compare similarity between time-frames of
each song (columns of each chromagram) to
produce a cost matrix.

• Determine minimum-cost path through
cost matrix, from start to end of song.

• Use minimum-cost path to determine
correspondence between songs.

Sifting out features via measuring similarity . . .



Temporal Alignment

Compare similarity between time-frames of each
song (columns of each chromagram) to produce a
cost matrix.



Temporal Alignment

“Walk through the valley” of the cost matrix!



. . . and that’s not all!

Many more methods and applications:

• audio decomposition (source separation)
• audio thumbnailing
• chord recognition
• instrument recognition
• onset detection
• pitch estimation (monophony, polyphony)
• structure analysis (ABAB, ABBA, . . . )
• tempo estimation

Interested in music signal processing?
6.300: Signal Processing (pre-req for ↓)
6.302: Fundamentals of Music Processing



Further Reading

Müller, Meinard. Fundamentals of Music
Processing: Using Python and Jupyter
Notebooks. Springer, 2021.

• available to MIT affiliates online for free
• official course textbook of 6.302
• FMP Notebooks provide examples in Python

Textbook
link.springer.com/book/10.1007/978-3-030-69808-9

FMP Notebooks
audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html

link.springer.com/book/10.1007/978-3-030-69808-9
audiolabs-erlangen.de/resources/MIR/FMP/C0/C0.html


Music Information Retrieval

Signal processing techniques enable us to
extract features from audio signals to
understand higher-level musical meaning.



Signal Processing at MIT

6.300 Signal Processing (D. Freeman) FA/SP

6.301 Signals, Systems, and Inference (Zheng) SP

6.302 Fundamentals of Music Processing (Egozy) FA

6.310 Dynamical Systems and Control (White) FA/SP

6.700 Discrete-Time Signal Processing (Ward) FA

6.701 Digital Image Processing (Rachlin, Lim) SP

6.741 Digital Communication (Chan, Médard) FA

6.862 Spoken Language Processing (Glass) SP

6.880 Biomedical Signal and Image Processing SP

6.C27 Computational Imaging (Barbastathis, You) FA

ES.S31 ESG Special Seminar (Roesler) FA/IAP

Al Oppenheim: “There will always be signals,
and they will always need to be processed.”


