# 6.3000: Signal Processing

**Circular Convolution** 

October 24, 2024

The signal x[n], defined below, is zero outside the indicated range.



Consider three ways to calculate the convolution of x[n] with itself. 1. direct convolution:

$$y_1[n] = (x * x)[n] = \sum_{m=-\infty}^{\infty} x[m]x[n-m]$$

2. using DTFTs:

$$y_2[n] = \frac{1}{2\pi} \int_{2\pi} X^2(\Omega) e^{j\Omega n} \, d\Omega \quad \text{where} \quad X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$

3. using DFTs of length N=16:

$$y_3[n] = 16\sum_{k=0}^{15} X^2[k]e^{j\frac{2\pi k}{16}n} \quad \text{where} \quad X[k] = \frac{1}{16}\sum_{n=0}^{15} x[n]e^{-j\frac{2\pi k}{16}n}$$

The plots on the right show the **first ten samples** of five signals. Match the signals on the left with the corresponding plots on the right.



Calculate (x\*x)[n] by direct convolution: flip and shift.



Calculate (x\*x)[n] by direct convolution: superposition.

Note: Superposition and flip-and-shift are equivalent methods. They always give the same answer.

Plots on the left show the **first ten samples** of five signals. Match signals on the left with corresponding samples on the right.



Calculate (x\*x)[n] using DTFTs.

$$\begin{aligned} x[n] & & \\ 1 & \downarrow & \downarrow & \downarrow & \\ 0 & \downarrow & 0 & \downarrow & 0 \\ 0 & \downarrow & 0 & 0 & 0 \\ 0 & \downarrow & 0 & 0 & 0 \\ 1 & \downarrow & 0 & 0 & 0 \\ 1 & = & \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = 1 + e^{-j\Omega} + e^{-j8\Omega} \\ X^{2}(\Omega) &= & \left(1 + e^{-j\Omega} + e^{-j8\Omega}\right)^{2} = 1 + 2e^{-j\Omega} + e^{-j2\Omega} + 2e^{-j8\Omega} + 2e^{-j8\Omega} + 2e^{-j9\Omega} + e^{-j16\Omega} \\ y_{2}[n] &= & \frac{1}{2\pi} \int_{2\pi} X^{2}(\Omega)e^{j\Omega n} d\Omega \\ &= & \frac{1}{2\pi} \int_{2\pi} (1 + 2e^{-j\Omega} + e^{-j2\Omega} + 2e^{-j8\Omega} + 2e^{-j9\Omega} + e^{-j16\Omega})e^{j\Omega n} d\Omega \\ &= & \delta[n] + 2\delta[n-1] + \delta[n-2] + 2\delta[n-8] + 2\delta[n-9] + \delta[n-16] \\ & y_{2}[n] \\ & 1 & \downarrow & \downarrow & \downarrow & \downarrow \\ 0 & 0 & 8 & 16 \\ \end{aligned}$$

Multiplying DTFTs is always equivalent to direct convolution.

Plots on the left show the **first ten samples** of five signals. Match signals on the left with corresponding samples on the right.



Calculate (x\*x)[n] using DFTs (N = 16).

$$\begin{aligned} x[n] & 1 & \downarrow 0 & \downarrow n \\ 0 & \downarrow 0 & \downarrow n \\ 160 & \downarrow 0 & \downarrow n \\ 160 & \downarrow 0 & \downarrow 0 & \downarrow n \\ X[k] &= \frac{1}{16} \sum_{n=0}^{15} x[n] e^{-j\frac{2\pi k}{16}n} = \frac{1}{16} \left(1 + e^{-j\frac{2\pi k}{16}} + e^{-j\frac{2\pi 8k}{16}}\right) \\ X^{2}[k] &= \frac{1}{256} \left(1 + 2e^{-j\frac{2\pi k}{16}} + e^{-j2\frac{2\pi k}{16}} + 2e^{-j8\frac{2\pi k}{16}} + 2e^{-j9\frac{2\pi k}{16}} + \frac{e^{-j16\frac{2\pi k}{16}}}{16}\right) \\ y_{3}[n] &= 16 \sum_{k=0}^{15} X^{2}[k] e^{j\frac{2\pi k}{16}n} \\ &= \frac{16}{256} \sum_{k=0}^{15} \left(2 + 2e^{-j\frac{2\pi k}{16}} + e^{-j2\frac{2\pi k}{16}} + 2e^{-j8\frac{2\pi k}{16}} + 2e^{-j9\frac{2\pi k}{16}}\right) e^{j\frac{2\pi k}{16}n} \\ &= 2\delta[n] + 2\delta[n-1] + \delta[n-2] + 2\delta[n-8] + 2\delta[n-9] \\ y_{3}[n] & 1 & \downarrow 0 & \downarrow$$

Since N=16, the sample at n=16 in direct convolution aliases to n=0.

Plots on the left show the **first ten samples** of five signals. Match signals on the left with corresponding samples on the right.



# **Circular Convolution**

Multiplication of DFTs corresponds to **circular** convolution in time. Assume that F[k] is the product of the DFTs of  $f_a[n]$  and  $f_b[n]$ .

$$\begin{split} f[n] &= \sum_{k=0}^{N-1} F[k] e^{j\frac{2\pi k}{N}n} = \sum_{k=0}^{N-1} F_a[k] F_b[k] e^{j\frac{2\pi k}{N}n} \\ &= \sum_{k=0}^{N-1} F_a[k] \Big( \frac{1}{N} \sum_{m=0}^{N-1} f_b[m] e^{-j\frac{2\pi k}{N}m} \Big) e^{j\frac{2\pi k}{N}n} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} f_b[m] \sum_{k=0}^{N-1} F_a[k] e^{j\frac{2\pi k}{N}(n-m)} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} f_b[m] f_{ap}[n-m] \end{split}$$

where  $f_{ap}[n] = f_a[n \mod N]$  is a periodically extended version of  $f_a[n]$ . We refer to this as **circular** or **periodic** convolution:

$$\frac{1}{N} (f_a \circledast f_b)[n] \qquad \stackrel{\text{DFT}}{\Longrightarrow} \qquad F_a[k] \times F_b[k]$$

# **Circular Convolution**

Circular convolution is equivalent to conventional convolution followed by periodic summation of results back into base period.



# **Circular Convolution**

Circular convolution of two signals is equal to conventional convolution of one signal with a periodically extended version of the other.



## Summary

One of the most useful properties of the DTFT is its filter property: convolution in time corresponds to multiplication in frequency.

 $(f * g)[n] \stackrel{\text{DTFT}}{\Longrightarrow} F(\Omega)G(\Omega)$ 

The DFT is slightly more complicated since the DFT is equivalent to the DTFS of a periodically extended version of x[n]:

x[n] = x[n+mN] for all integers m

A result of this periodicity is that the convolution that results when two DFTs are multiplied is also periodic.

We refer to this type of convolution as "circular convolution."

 $\frac{1}{N}(f \circledast g)[n] \stackrel{\mathrm{DFT}}{\Longrightarrow} F[k]G[k]$