6.3000: Signal Processing

Convolution vs. Filtering

time domain frequency domain
(h*z)( /h x(t—71)d Y(w) = H(w)X(w)
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The “Ideal” Low-Pass Filter

Consider a system characterized by the following purely real frequency re-
sponse:
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Such a system is called a low-pass filter, because it allows low frequencies
to pass through unmodified, while attenuating high frequencies.

We could apply this filter to a signal by multiplying the DTFT of that
signal by the values above. But we could also apply the filter by operating
in the time domain.



The “Ideal” Low-Pass Filter
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We can apply this filter to a signal by convolving with its unit sample

response. What is the unit sample response of the system whose frequency
response is shown above?
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Cascaded System

Consider the following system, where LPF represents a lowpass filter of the
form discussed on the previous slides.
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How many of the following statements are true?

e The transformation from z[n] to y[n| is linear.

e The transformation from z[n] to y[n| is time invariant.

e The transformation from xz[n] to y[n] is a high-pass filter.



Consider Each Part Separately

Start with the multiplier.
Is the following system linear?

x[n] :@ > y[n]
t

Assume the response to the input zi[n| is yi[n] and the response to the
input za[n] is yo[n]. Calculate the response to x[n] = axi[n] + Bza[n].

y[n] = (=1)"z[n]
= (=1)"(ax1[n] + Ba2[n])
= a(=1)"z1[n] + B(—1)"z2[n]
= ay1[n] + Byz[n]

linear!



Consider Each Part Separately

Is this system time-invariant?
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Assume the response to the input z1[n] is y1[n].
Calculate the response to z[n| = z1[n — ng|.

yln] = (-1 []

Shifting the input by ng samples shifts does not just shift the output by ng
samples.

this system is not time-invariant!



Consider Each Part Separately
Is the LPF linear? time-invariant?

z[n] —»| LPF +— y[n]

The defining property of a filter is that its output is a weighted sum of
(possibly) shifted versions of the frequencies in the input, so that

Y(Q) = HQ)X(Q).
Multiplication in frequency is the same as convolution in time, so
y[n] = (z * hp)[n]

where hL[-] represents the unit-sample response of the filter.
Convolution is both linear and time invariant (as shown on the next slides).



Convolution is Linear

Assume the response to the input z1[n] is yi[n] and the response to the
input za[n] is y2[n]. Calculate the response to z[n] = az1[n] + fxa[n].

ylnl =Y a[mlhln —m]
= Z (aml[m] + 6x2[m]>h[n —m]
=a Y wmlhln—m]+BY xalmlh[n —m]
= ay1[n] + Bya[n]

linear!



Convolution is Time-Invariant

Assume the response to the input zi[n] is yi[n] = (z1 * h)[n].
Calculate the response to z[n| = x1[n—no].

yln] = (z x h)[n]
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= (x1 % h)[n — ng] = y1[n—ng]

time-invariant!



Cascaded System

This system is the cascade of three linear subsystems, two of which are
time varying.

2] —(X)—>| LPF —s(X—> yl1]

Thus we know that the composite system is linear.

e The transformation from z[n] to y[n| is linear. v

e The transformation from z[n] to y[n| is time invariant.

e The transformation from xz[n] to y[n] is a high-pass filter.

The first is true. Not sure about the others.
Could the cascade of two time-varying systems be time-invariant?

Yes. Think about the cascade of x(—1)" with x(—1)".



Cascaded System

Determine an expression for y[n] in terms of z[n| using a time-domain
approach. Assume that the unit sample response of the LPF is hL[n].

x[n] —b@w—[n]b LPF ﬂ@)—’ y[n]

2[n) = (wxhy)ln] = Y (~1)"a[m]hyln—m]
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= (x*hg)[n] where hgln] = (—1)"hg[n]



Cascaded System

Find an expression for the unit sample response of a lowpass filter that
passes frequencies in the range —. < Q) < Q..

Hp(Q)
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Cascaded System

Plot hr[n] and hy[n] for Q. = %.

hL [n}




Cascaded System

Determine an expression for Hy(2).
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This is an example of the frequency shifting property:

If z[n] ZE' X(Q) then e/onzn] E' X(Q-Q,).



Cascaded System

Plot Hy(f2). Compare to Hr(Q).
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Hpy(Q) is a highpass filter!



Cascaded System

We have just shown that the original system is a highpass system.

2] —(X)—>| LPF —s(X—> y[1]
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Therefore all of the following are true!
e The transformation from z[n] to y[n] is linear. V/

e The transformation from z[n] to y[n] is time invariant. v/
e The transformation from z[n] to y[n] is a high-pass filter. V/



Cascaded System

Alternatively, we could solve this problem in the frequency domain.

x[n] —>®ﬂ> wxhy, ﬁ’@)—’ y[n]
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Since (—1)" = &/™, M(Q) is a complex sinusoid with frequency .
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Cascaded System

Assume X (Q2) differs at high and low frequencies, as shown below.

X(Q):
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Convolving with M () shifts X (2) by Q = m:
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Low pass filtering removes the high frequencies. Assume 2. = 7r/2:
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Convolving with M(2) shifts the result by Q = 7:

Y(Q): ‘
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Y (Q) is a highpass version of X ().




