6.3000: Signal Processing

Discrete-Time Fourier Series

Synthesis Equation

$$
f[n] = f[n+N] = \sum_{k=\langle N\rangle} a_k e^{j\frac{2\pi k}{N}n}
$$

Analysis Equation

$$
a_k = \frac{1}{N} \sum_{n=\langle N \rangle} f[n] e^{-j\frac{2\pi k}{N}n}
$$

September 19, 2024

Let $f[n]$ represent a periodic DT signal with period $N = 7$:

Determine the Fourier series coefficients *F*[*k*] for *f*[*n*].

Let $f[n]$ represent a periodic DT signal with period $N = 7$:

Determine the Fourier series coefficients *F*[*k*] for *f*[*n*].

$$
F[k] = \frac{1}{7} \sum_{n=0}^{6} f[n] e^{-j\frac{2\pi}{7}kn}
$$

= $\frac{1}{7} \left(\frac{1}{3} e^{-j\frac{2\pi}{7}k} + \frac{2}{3} e^{-j\frac{2\pi}{7}2k} + e^{-j\frac{2\pi}{7}3k} + e^{-j\frac{2\pi}{7}4k} + \frac{2}{3} e^{-j\frac{2\pi}{7}5k} + \frac{1}{3} e^{-j\frac{2\pi}{7}6k} \right)$

This is a completely well-formed answer $-$ but we can simplify.

Simplifying ...

$$
F[k] = \frac{1}{7}\left(\frac{1}{3}e^{-j\frac{2\pi}{7}k} + \frac{2}{3}e^{-j\frac{2\pi}{7}2k} + e^{-j\frac{2\pi}{7}3k} + e^{-j\frac{2\pi}{7}4k} + \frac{2}{3}e^{-j\frac{2\pi}{7}5k} + \frac{1}{3}e^{-j\frac{2\pi}{7}6k}\right)
$$

The last exponential term can be rewritten with a positive exponent: $e^{-j\frac{2\pi}{7}6k} = e^{j\frac{2\pi}{7}7k}e^{-j\frac{2\pi}{7}6k} = e^{j\frac{2\pi}{7}k}$ where we have used the fact that $e^{j\frac{2\pi}{7}7k}=1.$

This identity is also apparent in the complex plane.

We could get the same answer by summing a different set of time indices.

Sum $n = -3$ to 3 instead of 0 to 6:

$$
F[k] = \frac{1}{7} \sum_{n=-3}^{3} f[n] e^{-j\frac{2\pi}{7}kn}
$$

= $\frac{1}{7} \left(e^{j\frac{2\pi}{7}3k} + \frac{2}{3} e^{j\frac{2\pi}{7}2k} + \frac{1}{3} e^{j\frac{2\pi}{7}1k} + \frac{1}{3} e^{-j\frac{2\pi}{7}k} + \frac{2}{3} e^{-j\frac{2\pi}{7}2k} + e^{-j\frac{2\pi}{7}3k} \right)$
= $\frac{2}{21} \cos\left(\frac{2\pi k}{7}\right) + \frac{4}{21} \cos\left(\frac{4\pi k}{7}\right) + \frac{6}{21} \cos\left(\frac{6\pi k}{7}\right)$

Whichever way we do the math, the answer reduces to the sum of three cosine terms.

How would the answer change if the period were $N = 6$?

Determine the Fourier series coefficients *E*[*k*] for *e*[*n*].

How would the answer change if the period were $N = 6$?

Determine the Fourier series coefficients *E*[*k*] for *e*[*n*].

$$
E[k] = \frac{1}{6} \sum_{n=0}^{5} e[n]e^{-j\frac{2\pi}{6}kn}
$$

= $\frac{1}{6} \left(\frac{1}{3} e^{-j\frac{2\pi}{6}k} + \frac{2}{3} e^{-j\frac{2\pi}{6}2k} + \frac{3}{3} e^{-j\frac{2\pi}{6}3k} + \frac{2}{3} e^{-j\frac{2\pi}{6}4k} + \frac{1}{3} e^{-j\frac{2\pi}{6}5k} \right)$

Can we simplify the answer by summing over indices centered on 0?

How would the answer change if the period were $N = 6$?

Can we simplify the answer by summing over indices centered on 0?

Yes. But we must be careful at the edges.

Include $n = -3$ or $n = 3$ but not both.

$$
E[k] = \frac{1}{6} \sum_{n=-3}^{2} e[n] e^{-j\frac{2\pi}{6}kn}
$$

= $\frac{1}{6} \left(e^{j\frac{2\pi}{6}3k} + \frac{2}{3} e^{j\frac{2\pi}{6}2k} + \frac{1}{3} e^{j\frac{2\pi}{6}k} + \frac{1}{3} e^{-j\frac{2\pi}{6}k} + \frac{2}{3} e^{-j\frac{2\pi}{6}2k} \right)$

Notice that the $n = -3$ and $n = 3$ terms are equal.

$$
e^{j\frac{2\pi}{6}3k} = e^{-j\frac{2\pi}{6}3k} = (e^{\pm j\pi})^k = (-1)^k
$$

Consider a new signal $g[n]$ derived from $f[n]$ as follows:

Find the DTFS coefficients of *g*[*n*].

Consider a new signal $g[n]$ derived from $f[n]$ as follows:

Find the DTFS coefficients of *g*[*n*].

The straightforward approach is to calculate *g*[*n*] for all *n*.

An easier approach is to use properties of the Fourier series. We can use linearity to break the problem into two easier pieces:

 $g[n] = g_1[n] - g_2[n]$ where $q_1[n] = 9$ and $q_2[n] = 3f[n-1]$.

We can use linearity to break the problem into two easier pieces.

 $q[n] = q_1[n] - q_2[n]$ where $g_1[n] = 9$ and $g_2[n] = 3f[n-1]$.

$$
G_1[k] = \frac{1}{7} \sum_{n=0}^{6} 9e^{-j\frac{2\pi}{7}kn} = 9\delta[k]
$$

Notice that we must use the same period $N = 7$ for $G_1[k]$, $G_2[k]$, and $G[k]$ in order to (later) apply linearity.

 $g_2[n]$ combines a delay of 1 sample with multiplying by a scale factor 3. The delay of 1 simply multiplies the Fourier coefficients (of $f[n]$) by $e^{-j\frac{2\pi}{7}k}$. Scaling by 3 similarly multiplies the Fourier coefficients (of $f[n-1]$) by 3. The net result is

$$
G_2[k] = 3e^{-j\frac{2\pi}{7}k}F[k]
$$

and

$$
G[k] = 9\delta[k] - 3e^{-j\frac{2\pi}{7}k}F[k]
$$

Consider another new signal

 $h[n] = (-1)^n f[n]$

where

Find the DTFS coefficients of *h*[*n*].

Consider another new signal

 $h[n] = (-1)^n f[n]$

where

Find the DTFS coefficients of *h*[*n*].

What's the effect of multiplying by (−1)*k*?

Let $f_1[n] = (-1)^n f[n]$. Notice that $f_1[n]$ is not periodic in $N = 7$. We will have to analyze $f_1[n]$ with $N = 14!$

How does changing $N = 7$ to $N = 14$ affect the Fourier series coefficients?

If the period is $N = 7$ then

$$
F_7[k] = \frac{1}{7} \sum_{n=0}^{6} f[n] e^{-j\frac{2\pi}{7}kn}
$$

If the period is $N = 14$ then

$$
F_{14}[k] = \frac{1}{14} \sum_{n=0}^{13} f[n]e^{-j\frac{2\pi}{14}kn}
$$

\n
$$
= \frac{1}{14} \sum_{n=0}^{6} f[n]e^{-j\frac{2\pi}{14}kn} + \frac{1}{14} \sum_{n=7}^{13} f[n]e^{-j\frac{2\pi}{14}kn}
$$

\n
$$
= \frac{1}{14} \sum_{n=0}^{6} f[n]e^{-j\frac{2\pi}{14}kn} + \frac{1}{14} \sum_{m=0}^{6} \underbrace{f[m+7]}_{f[m]} \underbrace{e^{-j\frac{2\pi}{14}k(m+7)}}_{e^{-j\frac{2\pi}{14}km}e^{-j\frac{2\pi}{14}7k}
$$

\n
$$
= \frac{1}{14} \sum_{n=0}^{6} f[n] \left(1 + (-1)^k\right) e^{-j\frac{2\pi}{14}kn} = \begin{cases} F_7[k/2] & \text{if } k \text{ is even} \\ 0 & \text{otherwise} \end{cases}
$$

How does changing $N = 7$ to $N = 14$ affect the Fourier series coefficients?

The components of F_7 are **stretched** in F_{14} .

There is no fundamental in F_{14} , the harmonics are 0, 2, 4, ... 12.

Now find the DTFS coefficients for *h*[*n*]:

 $h[n] = (-1)^n f[n]$

$$
H[k] = \frac{1}{14} \sum_{n=0}^{13} (-1)^n f[n] e^{-j\frac{2\pi}{14}kn}
$$

= $\frac{1}{14} \sum_{n=0}^{13} e^{j\pi n} f[n] e^{-j\frac{2\pi}{14}kn}$
= $\frac{1}{14} \sum_{n=0}^{13} f[n] e^{-j\frac{2\pi}{14}(k-7)n}$
= $F_{14}[k-7]$
= $\begin{cases} F_7[(k-7)/2] & \text{if } k-7 \text{ is even} \\ 0 & \text{otherwise} \end{cases}$
= $\begin{cases} F[(k-7)/2] & \text{if } k \text{ is odd} \\ 0 & \text{otherwise} \end{cases}$

Which of the following plots shows the angle of *e* [−]*jx*?

∠*e* [−]*jx*: A complex exponential of the form *e jθ* has magnitude 1 and angle θ . Therefore, the angle of e^{-jx} is $-x$, as shown in plot B.

Which of the following plots shows the angle of $(1+0.8e^{jx})$?

 $\angle (1+0.8e^{jx})$: The number $1+0.8e^{jx}$ is the sum of 1 with a vector of magnitude 0*.*8 and angle *x* as shown in the following plot.

When x is small, the angle of the sum is zero. As x increases, the angle increases until *x* reaches about $3\pi/4$. At this point, the angle of the sum is on the order of $\pi/3$. As x increases above $3\pi/4$, the angle of the sum quickly decreases, returning to zero when $x = \pi$. From the symmetry of the figure, it follows that the angle of the sum is an odd function of *x*. Thus the answer is plot E.

Which of the following plots shows the angle of $\left(\frac{1+0.4e^{jx}}{2+0.8e^{jx}}\right)$ $\frac{1+0.4e^{jx}}{2+0.8e^{jx}}$?

∠ $\left(\frac{1+0.4e^{jx}}{i} \right)$ $\frac{1+0.4e^{jx}}{2+0.8e^{jx}}\Big)$: Since the denominator is twice the numerator, this is just the angle of a real number $(1/2)$, which is zero – plot I.

Which of the following plots shows the angle of $(1+e^{jx})$?

 $\angle(1+e^{jx})$: $1 + e^{jx} = e^{j\frac{x}{2}} \left(e^{-j\frac{x}{2}} + e^{j\frac{x}{2}} \right) = e^{j\frac{x}{2}} 2 \cos \left(\frac{x}{2} \right)$ \setminus

Thus the angle of $1 + e^{jx}$ is $x/2$ for $-\pi < x < \pi$. At $x = \pi$ the sign of the cosine flips so that angle jumps by π . Thus the answer is plot C.