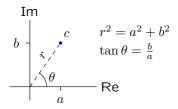
6.3000: Signal Processing

Fourier Series - Complex Form

Synthesis Equation (making a signal from components):

$$f(t) = f(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$


Analysis Equation (finding the components)

$$a_k = \frac{1}{T} \int_T f(t)e^{-jk\omega_O t} dt$$

where
$$\omega_o=rac{2\pi}{T}$$

Representations of Complex Numbers

Let c represent a complex number.

rectangular form:
$$c = a + jb$$

polar (phasor) form:
$$r\angle\theta$$

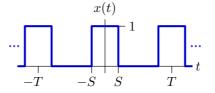
Euler form:
$$r e^{j\theta}$$

Complex Numbers

How many of the following are true?

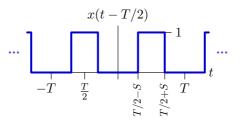
$$\bullet \quad \frac{1}{\cos\theta + j\sin\theta} = \cos\theta - j\sin\theta$$

•
$$(\cos \theta + j \sin \theta)^n = \cos(n\theta) + j \sin(n\theta)$$

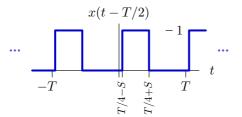

•
$$|2+j2+e^{\frac{j\pi}{4}}| = |2+j2| + |e^{\frac{j\pi}{4}}|$$

•
$$\operatorname{Im}\left(j^{j}\right) > \operatorname{Re}\left(j^{j}\right)$$

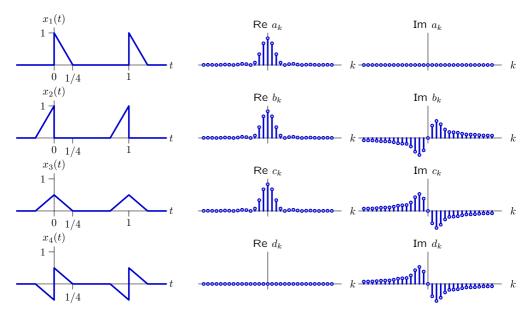
•
$$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}1$$


Pulse Train

Find the Fourier series coefficients a_k for x(t):


Pulse Train

What would happen to Fourier series if you delayed x(t) by T/2?


Pulse Train

What would happen if you delayed x(t) by T/4?

Fourier Series Matching

Match the signals (left column) to Fourier series coefficients (right).

